MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enfii Structured version   Visualization version   GIF version

Theorem enfii 9095
Description: A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5301. (Revised by BTernaryTau, 23-Sep-2024.)
Assertion
Ref Expression
enfii ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)

Proof of Theorem enfii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfi 8898 . . . . . 6 (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵𝑥)
2 df-rex 3057 . . . . . 6 (∃𝑥 ∈ ω 𝐵𝑥 ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝐵𝑥))
31, 2sylbb 219 . . . . 5 (𝐵 ∈ Fin → ∃𝑥(𝑥 ∈ ω ∧ 𝐵𝑥))
4 ensymfib 9093 . . . . . 6 (𝐵 ∈ Fin → (𝐵𝐴𝐴𝐵))
54biimparc 479 . . . . 5 ((𝐴𝐵𝐵 ∈ Fin) → 𝐵𝐴)
6 19.41v 1950 . . . . . 6 (∃𝑥((𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴) ↔ (∃𝑥(𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴))
7 simp1 1136 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝐵𝑥𝐵𝐴) → 𝑥 ∈ ω)
8 nnfi 9077 . . . . . . . . . 10 (𝑥 ∈ ω → 𝑥 ∈ Fin)
9 ensymfib 9093 . . . . . . . . . . . . . 14 (𝑥 ∈ Fin → (𝑥𝐵𝐵𝑥))
109biimpar 477 . . . . . . . . . . . . 13 ((𝑥 ∈ Fin ∧ 𝐵𝑥) → 𝑥𝐵)
11103adant3 1132 . . . . . . . . . . . 12 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐵𝐴) → 𝑥𝐵)
12 entrfil 9094 . . . . . . . . . . . 12 ((𝑥 ∈ Fin ∧ 𝑥𝐵𝐵𝐴) → 𝑥𝐴)
1311, 12syld3an2 1413 . . . . . . . . . . 11 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐵𝐴) → 𝑥𝐴)
14 ensymfib 9093 . . . . . . . . . . . 12 (𝑥 ∈ Fin → (𝑥𝐴𝐴𝑥))
15143ad2ant1 1133 . . . . . . . . . . 11 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐵𝐴) → (𝑥𝐴𝐴𝑥))
1613, 15mpbid 232 . . . . . . . . . 10 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐵𝐴) → 𝐴𝑥)
178, 16syl3an1 1163 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝐵𝑥𝐵𝐴) → 𝐴𝑥)
187, 17jca 511 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝐵𝑥𝐵𝐴) → (𝑥 ∈ ω ∧ 𝐴𝑥))
19183expa 1118 . . . . . . 7 (((𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴) → (𝑥 ∈ ω ∧ 𝐴𝑥))
2019eximi 1836 . . . . . 6 (∃𝑥((𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴𝑥))
216, 20sylbir 235 . . . . 5 ((∃𝑥(𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴𝑥))
223, 5, 21syl2an2 686 . . . 4 ((𝐴𝐵𝐵 ∈ Fin) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴𝑥))
23 df-rex 3057 . . . 4 (∃𝑥 ∈ ω 𝐴𝑥 ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝐴𝑥))
2422, 23sylibr 234 . . 3 ((𝐴𝐵𝐵 ∈ Fin) → ∃𝑥 ∈ ω 𝐴𝑥)
25 isfi 8898 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2624, 25sylibr 234 . 2 ((𝐴𝐵𝐵 ∈ Fin) → 𝐴 ∈ Fin)
2726ancoms 458 1 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wex 1780  wcel 2111  wrex 3056   class class class wbr 5089  ωcom 7796  cen 8866  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-en 8870  df-fin 8873
This theorem is referenced by:  enfi  9096  domfi  9098  entrfi  9099  entrfir  9100  domsdomtrfi  9111  f1finf1o  9157  isfinite2  9182  fofinf1o  9216  cnvfiALT  9223  f1dmvrnfibi  9225  cantnfcl  9557  en2eqpr  9898  fzfi  13879  hasheni  14255  fz1isolem  14368  isercolllem2  15573  isercoll  15575  summolem2  15623  zsum  15625  prodmolem2  15842  zprod  15844  bitsf1  16357  simpgnsgd  20014  ovoliunlem1  25430  wlksnfi  29885  eupthfi  30185  eulerpartlemgs2  34393  derangenlem  35215  erdsze2lem2  35248  heicant  37705  sticksstones18  42267  sticksstones19  42268
  Copyright terms: Public domain W3C validator