MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enfii Structured version   Visualization version   GIF version

Theorem enfii 9150
Description: A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5320. (Revised by BTernaryTau, 23-Sep-2024.)
Assertion
Ref Expression
enfii ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)

Proof of Theorem enfii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfi 8947 . . . . . 6 (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵𝑥)
2 df-rex 3054 . . . . . 6 (∃𝑥 ∈ ω 𝐵𝑥 ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝐵𝑥))
31, 2sylbb 219 . . . . 5 (𝐵 ∈ Fin → ∃𝑥(𝑥 ∈ ω ∧ 𝐵𝑥))
4 ensymfib 9148 . . . . . 6 (𝐵 ∈ Fin → (𝐵𝐴𝐴𝐵))
54biimparc 479 . . . . 5 ((𝐴𝐵𝐵 ∈ Fin) → 𝐵𝐴)
6 19.41v 1949 . . . . . 6 (∃𝑥((𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴) ↔ (∃𝑥(𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴))
7 simp1 1136 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝐵𝑥𝐵𝐴) → 𝑥 ∈ ω)
8 nnfi 9131 . . . . . . . . . 10 (𝑥 ∈ ω → 𝑥 ∈ Fin)
9 ensymfib 9148 . . . . . . . . . . . . . 14 (𝑥 ∈ Fin → (𝑥𝐵𝐵𝑥))
109biimpar 477 . . . . . . . . . . . . 13 ((𝑥 ∈ Fin ∧ 𝐵𝑥) → 𝑥𝐵)
11103adant3 1132 . . . . . . . . . . . 12 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐵𝐴) → 𝑥𝐵)
12 entrfil 9149 . . . . . . . . . . . 12 ((𝑥 ∈ Fin ∧ 𝑥𝐵𝐵𝐴) → 𝑥𝐴)
1311, 12syld3an2 1413 . . . . . . . . . . 11 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐵𝐴) → 𝑥𝐴)
14 ensymfib 9148 . . . . . . . . . . . 12 (𝑥 ∈ Fin → (𝑥𝐴𝐴𝑥))
15143ad2ant1 1133 . . . . . . . . . . 11 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐵𝐴) → (𝑥𝐴𝐴𝑥))
1613, 15mpbid 232 . . . . . . . . . 10 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐵𝐴) → 𝐴𝑥)
178, 16syl3an1 1163 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝐵𝑥𝐵𝐴) → 𝐴𝑥)
187, 17jca 511 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝐵𝑥𝐵𝐴) → (𝑥 ∈ ω ∧ 𝐴𝑥))
19183expa 1118 . . . . . . 7 (((𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴) → (𝑥 ∈ ω ∧ 𝐴𝑥))
2019eximi 1835 . . . . . 6 (∃𝑥((𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴𝑥))
216, 20sylbir 235 . . . . 5 ((∃𝑥(𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴𝑥))
223, 5, 21syl2an2 686 . . . 4 ((𝐴𝐵𝐵 ∈ Fin) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴𝑥))
23 df-rex 3054 . . . 4 (∃𝑥 ∈ ω 𝐴𝑥 ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝐴𝑥))
2422, 23sylibr 234 . . 3 ((𝐴𝐵𝐵 ∈ Fin) → ∃𝑥 ∈ ω 𝐴𝑥)
25 isfi 8947 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2624, 25sylibr 234 . 2 ((𝐴𝐵𝐵 ∈ Fin) → 𝐴 ∈ Fin)
2726ancoms 458 1 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wex 1779  wcel 2109  wrex 3053   class class class wbr 5107  ωcom 7842  cen 8915  Fincfn 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-en 8919  df-fin 8922
This theorem is referenced by:  enfi  9151  domfi  9153  entrfi  9154  entrfir  9155  domsdomtrfi  9166  f1finf1o  9216  en1eqsnOLD  9220  isfinite2  9245  xpfiOLD  9270  fofinf1o  9283  cnvfiALT  9290  f1dmvrnfibi  9292  cantnfcl  9620  en2eqpr  9960  fzfi  13937  hasheni  14313  fz1isolem  14426  isercolllem2  15632  isercoll  15634  summolem2  15682  zsum  15684  prodmolem2  15901  zprod  15903  bitsf1  16416  simpgnsgd  20032  ovoliunlem1  25403  wlksnfi  29837  eupthfi  30134  eulerpartlemgs2  34371  derangenlem  35158  erdsze2lem2  35191  heicant  37649  sticksstones18  42152  sticksstones19  42153
  Copyright terms: Public domain W3C validator