MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enfii Structured version   Visualization version   GIF version

Theorem enfii 9223
Description: A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5370. (Revised by BTernaryTau, 23-Sep-2024.)
Assertion
Ref Expression
enfii ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)

Proof of Theorem enfii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfi 9014 . . . . . 6 (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵𝑥)
2 df-rex 3068 . . . . . 6 (∃𝑥 ∈ ω 𝐵𝑥 ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝐵𝑥))
31, 2sylbb 219 . . . . 5 (𝐵 ∈ Fin → ∃𝑥(𝑥 ∈ ω ∧ 𝐵𝑥))
4 ensymfib 9221 . . . . . 6 (𝐵 ∈ Fin → (𝐵𝐴𝐴𝐵))
54biimparc 479 . . . . 5 ((𝐴𝐵𝐵 ∈ Fin) → 𝐵𝐴)
6 19.41v 1946 . . . . . 6 (∃𝑥((𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴) ↔ (∃𝑥(𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴))
7 simp1 1135 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝐵𝑥𝐵𝐴) → 𝑥 ∈ ω)
8 nnfi 9205 . . . . . . . . . 10 (𝑥 ∈ ω → 𝑥 ∈ Fin)
9 ensymfib 9221 . . . . . . . . . . . . . 14 (𝑥 ∈ Fin → (𝑥𝐵𝐵𝑥))
109biimpar 477 . . . . . . . . . . . . 13 ((𝑥 ∈ Fin ∧ 𝐵𝑥) → 𝑥𝐵)
11103adant3 1131 . . . . . . . . . . . 12 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐵𝐴) → 𝑥𝐵)
12 entrfil 9222 . . . . . . . . . . . 12 ((𝑥 ∈ Fin ∧ 𝑥𝐵𝐵𝐴) → 𝑥𝐴)
1311, 12syld3an2 1410 . . . . . . . . . . 11 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐵𝐴) → 𝑥𝐴)
14 ensymfib 9221 . . . . . . . . . . . 12 (𝑥 ∈ Fin → (𝑥𝐴𝐴𝑥))
15143ad2ant1 1132 . . . . . . . . . . 11 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐵𝐴) → (𝑥𝐴𝐴𝑥))
1613, 15mpbid 232 . . . . . . . . . 10 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐵𝐴) → 𝐴𝑥)
178, 16syl3an1 1162 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝐵𝑥𝐵𝐴) → 𝐴𝑥)
187, 17jca 511 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝐵𝑥𝐵𝐴) → (𝑥 ∈ ω ∧ 𝐴𝑥))
19183expa 1117 . . . . . . 7 (((𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴) → (𝑥 ∈ ω ∧ 𝐴𝑥))
2019eximi 1831 . . . . . 6 (∃𝑥((𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴𝑥))
216, 20sylbir 235 . . . . 5 ((∃𝑥(𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴𝑥))
223, 5, 21syl2an2 686 . . . 4 ((𝐴𝐵𝐵 ∈ Fin) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴𝑥))
23 df-rex 3068 . . . 4 (∃𝑥 ∈ ω 𝐴𝑥 ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝐴𝑥))
2422, 23sylibr 234 . . 3 ((𝐴𝐵𝐵 ∈ Fin) → ∃𝑥 ∈ ω 𝐴𝑥)
25 isfi 9014 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2624, 25sylibr 234 . 2 ((𝐴𝐵𝐵 ∈ Fin) → 𝐴 ∈ Fin)
2726ancoms 458 1 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wex 1775  wcel 2105  wrex 3067   class class class wbr 5147  ωcom 7886  cen 8980  Fincfn 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-om 7887  df-1o 8504  df-en 8984  df-fin 8987
This theorem is referenced by:  enfi  9224  domfi  9226  entrfi  9227  entrfir  9228  domsdomtrfi  9239  f1finf1o  9302  en1eqsnOLD  9306  isfinite2  9331  xpfiOLD  9356  fofinf1o  9369  cnvfiALT  9376  f1dmvrnfibi  9378  cantnfcl  9704  en2eqpr  10044  fzfi  14009  hasheni  14383  fz1isolem  14496  isercolllem2  15698  isercoll  15700  summolem2  15748  zsum  15750  prodmolem2  15967  zprod  15969  bitsf1  16479  simpgnsgd  20134  ovoliunlem1  25550  wlksnfi  29936  eupthfi  30233  eulerpartlemgs2  34361  derangenlem  35155  erdsze2lem2  35188  heicant  37641  sticksstones18  42145  sticksstones19  42146
  Copyright terms: Public domain W3C validator