| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enfii | Structured version Visualization version GIF version | ||
| Description: A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5335. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| enfii | ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 8988 | . . . . . 6 ⊢ (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) | |
| 2 | df-rex 3061 | . . . . . 6 ⊢ (∃𝑥 ∈ ω 𝐵 ≈ 𝑥 ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥)) | |
| 3 | 1, 2 | sylbb 219 | . . . . 5 ⊢ (𝐵 ∈ Fin → ∃𝑥(𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥)) |
| 4 | ensymfib 9196 | . . . . . 6 ⊢ (𝐵 ∈ Fin → (𝐵 ≈ 𝐴 ↔ 𝐴 ≈ 𝐵)) | |
| 5 | 4 | biimparc 479 | . . . . 5 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐵 ≈ 𝐴) |
| 6 | 19.41v 1949 | . . . . . 6 ⊢ (∃𝑥((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴) ↔ (∃𝑥(𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴)) | |
| 7 | simp1 1136 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝑥 ∈ ω) | |
| 8 | nnfi 9179 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ω → 𝑥 ∈ Fin) | |
| 9 | ensymfib 9196 | . . . . . . . . . . . . . 14 ⊢ (𝑥 ∈ Fin → (𝑥 ≈ 𝐵 ↔ 𝐵 ≈ 𝑥)) | |
| 10 | 9 | biimpar 477 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥) → 𝑥 ≈ 𝐵) |
| 11 | 10 | 3adant3 1132 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝑥 ≈ 𝐵) |
| 12 | entrfil 9197 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ Fin ∧ 𝑥 ≈ 𝐵 ∧ 𝐵 ≈ 𝐴) → 𝑥 ≈ 𝐴) | |
| 13 | 11, 12 | syld3an2 1413 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝑥 ≈ 𝐴) |
| 14 | ensymfib 9196 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ Fin → (𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥)) | |
| 15 | 14 | 3ad2ant1 1133 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → (𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥)) |
| 16 | 13, 15 | mpbid 232 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝐴 ≈ 𝑥) |
| 17 | 8, 16 | syl3an1 1163 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝐴 ≈ 𝑥) |
| 18 | 7, 17 | jca 511 | . . . . . . . 8 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → (𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
| 19 | 18 | 3expa 1118 | . . . . . . 7 ⊢ (((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴) → (𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
| 20 | 19 | eximi 1835 | . . . . . 6 ⊢ (∃𝑥((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
| 21 | 6, 20 | sylbir 235 | . . . . 5 ⊢ ((∃𝑥(𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
| 22 | 3, 5, 21 | syl2an2 686 | . . . 4 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
| 23 | df-rex 3061 | . . . 4 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) | |
| 24 | 22, 23 | sylibr 234 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 25 | isfi 8988 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 26 | 24, 25 | sylibr 234 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin) |
| 27 | 26 | ancoms 458 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∃wex 1779 ∈ wcel 2108 ∃wrex 3060 class class class wbr 5119 ωcom 7859 ≈ cen 8954 Fincfn 8957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-om 7860 df-1o 8478 df-en 8958 df-fin 8961 |
| This theorem is referenced by: enfi 9199 domfi 9201 entrfi 9202 entrfir 9203 domsdomtrfi 9214 f1finf1o 9275 en1eqsnOLD 9279 isfinite2 9304 xpfiOLD 9329 fofinf1o 9342 cnvfiALT 9349 f1dmvrnfibi 9351 cantnfcl 9679 en2eqpr 10019 fzfi 13988 hasheni 14364 fz1isolem 14477 isercolllem2 15680 isercoll 15682 summolem2 15730 zsum 15732 prodmolem2 15949 zprod 15951 bitsf1 16463 simpgnsgd 20081 ovoliunlem1 25453 wlksnfi 29835 eupthfi 30132 eulerpartlemgs2 34358 derangenlem 35139 erdsze2lem2 35172 heicant 37625 sticksstones18 42123 sticksstones19 42124 |
| Copyright terms: Public domain | W3C validator |