| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enfii | Structured version Visualization version GIF version | ||
| Description: A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5323. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| enfii | ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 8950 | . . . . . 6 ⊢ (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) | |
| 2 | df-rex 3055 | . . . . . 6 ⊢ (∃𝑥 ∈ ω 𝐵 ≈ 𝑥 ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥)) | |
| 3 | 1, 2 | sylbb 219 | . . . . 5 ⊢ (𝐵 ∈ Fin → ∃𝑥(𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥)) |
| 4 | ensymfib 9154 | . . . . . 6 ⊢ (𝐵 ∈ Fin → (𝐵 ≈ 𝐴 ↔ 𝐴 ≈ 𝐵)) | |
| 5 | 4 | biimparc 479 | . . . . 5 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐵 ≈ 𝐴) |
| 6 | 19.41v 1949 | . . . . . 6 ⊢ (∃𝑥((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴) ↔ (∃𝑥(𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴)) | |
| 7 | simp1 1136 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝑥 ∈ ω) | |
| 8 | nnfi 9137 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ω → 𝑥 ∈ Fin) | |
| 9 | ensymfib 9154 | . . . . . . . . . . . . . 14 ⊢ (𝑥 ∈ Fin → (𝑥 ≈ 𝐵 ↔ 𝐵 ≈ 𝑥)) | |
| 10 | 9 | biimpar 477 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥) → 𝑥 ≈ 𝐵) |
| 11 | 10 | 3adant3 1132 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝑥 ≈ 𝐵) |
| 12 | entrfil 9155 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ Fin ∧ 𝑥 ≈ 𝐵 ∧ 𝐵 ≈ 𝐴) → 𝑥 ≈ 𝐴) | |
| 13 | 11, 12 | syld3an2 1413 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝑥 ≈ 𝐴) |
| 14 | ensymfib 9154 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ Fin → (𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥)) | |
| 15 | 14 | 3ad2ant1 1133 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → (𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥)) |
| 16 | 13, 15 | mpbid 232 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝐴 ≈ 𝑥) |
| 17 | 8, 16 | syl3an1 1163 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝐴 ≈ 𝑥) |
| 18 | 7, 17 | jca 511 | . . . . . . . 8 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → (𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
| 19 | 18 | 3expa 1118 | . . . . . . 7 ⊢ (((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴) → (𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
| 20 | 19 | eximi 1835 | . . . . . 6 ⊢ (∃𝑥((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
| 21 | 6, 20 | sylbir 235 | . . . . 5 ⊢ ((∃𝑥(𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
| 22 | 3, 5, 21 | syl2an2 686 | . . . 4 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
| 23 | df-rex 3055 | . . . 4 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) | |
| 24 | 22, 23 | sylibr 234 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 25 | isfi 8950 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 26 | 24, 25 | sylibr 234 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin) |
| 27 | 26 | ancoms 458 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 class class class wbr 5110 ωcom 7845 ≈ cen 8918 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-en 8922 df-fin 8925 |
| This theorem is referenced by: enfi 9157 domfi 9159 entrfi 9160 entrfir 9161 domsdomtrfi 9172 f1finf1o 9223 en1eqsnOLD 9227 isfinite2 9252 xpfiOLD 9277 fofinf1o 9290 cnvfiALT 9297 f1dmvrnfibi 9299 cantnfcl 9627 en2eqpr 9967 fzfi 13944 hasheni 14320 fz1isolem 14433 isercolllem2 15639 isercoll 15641 summolem2 15689 zsum 15691 prodmolem2 15908 zprod 15910 bitsf1 16423 simpgnsgd 20039 ovoliunlem1 25410 wlksnfi 29844 eupthfi 30141 eulerpartlemgs2 34378 derangenlem 35165 erdsze2lem2 35198 heicant 37656 sticksstones18 42159 sticksstones19 42160 |
| Copyright terms: Public domain | W3C validator |