MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enfii Structured version   Visualization version   GIF version

Theorem enfii 9186
Description: A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5363. (Revised by BTernaryTau, 23-Sep-2024.)
Assertion
Ref Expression
enfii ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)

Proof of Theorem enfii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfi 8969 . . . . . 6 (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵𝑥)
2 df-rex 3072 . . . . . 6 (∃𝑥 ∈ ω 𝐵𝑥 ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝐵𝑥))
31, 2sylbb 218 . . . . 5 (𝐵 ∈ Fin → ∃𝑥(𝑥 ∈ ω ∧ 𝐵𝑥))
4 ensymfib 9184 . . . . . 6 (𝐵 ∈ Fin → (𝐵𝐴𝐴𝐵))
54biimparc 481 . . . . 5 ((𝐴𝐵𝐵 ∈ Fin) → 𝐵𝐴)
6 19.41v 1954 . . . . . 6 (∃𝑥((𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴) ↔ (∃𝑥(𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴))
7 simp1 1137 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝐵𝑥𝐵𝐴) → 𝑥 ∈ ω)
8 nnfi 9164 . . . . . . . . . 10 (𝑥 ∈ ω → 𝑥 ∈ Fin)
9 ensymfib 9184 . . . . . . . . . . . . . 14 (𝑥 ∈ Fin → (𝑥𝐵𝐵𝑥))
109biimpar 479 . . . . . . . . . . . . 13 ((𝑥 ∈ Fin ∧ 𝐵𝑥) → 𝑥𝐵)
11103adant3 1133 . . . . . . . . . . . 12 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐵𝐴) → 𝑥𝐵)
12 entrfil 9185 . . . . . . . . . . . 12 ((𝑥 ∈ Fin ∧ 𝑥𝐵𝐵𝐴) → 𝑥𝐴)
1311, 12syld3an2 1412 . . . . . . . . . . 11 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐵𝐴) → 𝑥𝐴)
14 ensymfib 9184 . . . . . . . . . . . 12 (𝑥 ∈ Fin → (𝑥𝐴𝐴𝑥))
15143ad2ant1 1134 . . . . . . . . . . 11 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐵𝐴) → (𝑥𝐴𝐴𝑥))
1613, 15mpbid 231 . . . . . . . . . 10 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐵𝐴) → 𝐴𝑥)
178, 16syl3an1 1164 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝐵𝑥𝐵𝐴) → 𝐴𝑥)
187, 17jca 513 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝐵𝑥𝐵𝐴) → (𝑥 ∈ ω ∧ 𝐴𝑥))
19183expa 1119 . . . . . . 7 (((𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴) → (𝑥 ∈ ω ∧ 𝐴𝑥))
2019eximi 1838 . . . . . 6 (∃𝑥((𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴𝑥))
216, 20sylbir 234 . . . . 5 ((∃𝑥(𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴𝑥))
223, 5, 21syl2an2 685 . . . 4 ((𝐴𝐵𝐵 ∈ Fin) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴𝑥))
23 df-rex 3072 . . . 4 (∃𝑥 ∈ ω 𝐴𝑥 ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝐴𝑥))
2422, 23sylibr 233 . . 3 ((𝐴𝐵𝐵 ∈ Fin) → ∃𝑥 ∈ ω 𝐴𝑥)
25 isfi 8969 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2624, 25sylibr 233 . 2 ((𝐴𝐵𝐵 ∈ Fin) → 𝐴 ∈ Fin)
2726ancoms 460 1 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088  wex 1782  wcel 2107  wrex 3071   class class class wbr 5148  ωcom 7852  cen 8933  Fincfn 8936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-om 7853  df-1o 8463  df-en 8937  df-fin 8940
This theorem is referenced by:  enfi  9187  domfi  9189  entrfi  9190  entrfir  9191  domsdomtrfi  9202  f1finf1o  9268  en1eqsnOLD  9272  isfinite2  9298  xpfiOLD  9315  fofinf1o  9324  cnvfiALT  9331  f1dmvrnfibi  9333  pwfiOLD  9344  cantnfcl  9659  en2eqpr  9999  fzfi  13934  hasheni  14305  fz1isolem  14419  isercolllem2  15609  isercoll  15611  summolem2  15659  zsum  15661  prodmolem2  15876  zprod  15878  bitsf1  16384  simpgnsgd  19965  ovoliunlem1  25011  wlksnfi  29151  eupthfi  29448  eulerpartlemgs2  33368  derangenlem  34151  erdsze2lem2  34184  heicant  36512  sticksstones18  40969  sticksstones19  40970
  Copyright terms: Public domain W3C validator