![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enfii | Structured version Visualization version GIF version |
Description: A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5364. (Revised by BTernaryTau, 23-Sep-2024.) |
Ref | Expression |
---|---|
enfii | ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 8972 | . . . . . 6 ⊢ (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) | |
2 | df-rex 3072 | . . . . . 6 ⊢ (∃𝑥 ∈ ω 𝐵 ≈ 𝑥 ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥)) | |
3 | 1, 2 | sylbb 218 | . . . . 5 ⊢ (𝐵 ∈ Fin → ∃𝑥(𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥)) |
4 | ensymfib 9187 | . . . . . 6 ⊢ (𝐵 ∈ Fin → (𝐵 ≈ 𝐴 ↔ 𝐴 ≈ 𝐵)) | |
5 | 4 | biimparc 481 | . . . . 5 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐵 ≈ 𝐴) |
6 | 19.41v 1954 | . . . . . 6 ⊢ (∃𝑥((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴) ↔ (∃𝑥(𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴)) | |
7 | simp1 1137 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝑥 ∈ ω) | |
8 | nnfi 9167 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ω → 𝑥 ∈ Fin) | |
9 | ensymfib 9187 | . . . . . . . . . . . . . 14 ⊢ (𝑥 ∈ Fin → (𝑥 ≈ 𝐵 ↔ 𝐵 ≈ 𝑥)) | |
10 | 9 | biimpar 479 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥) → 𝑥 ≈ 𝐵) |
11 | 10 | 3adant3 1133 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝑥 ≈ 𝐵) |
12 | entrfil 9188 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ Fin ∧ 𝑥 ≈ 𝐵 ∧ 𝐵 ≈ 𝐴) → 𝑥 ≈ 𝐴) | |
13 | 11, 12 | syld3an2 1412 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝑥 ≈ 𝐴) |
14 | ensymfib 9187 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ Fin → (𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥)) | |
15 | 14 | 3ad2ant1 1134 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → (𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥)) |
16 | 13, 15 | mpbid 231 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝐴 ≈ 𝑥) |
17 | 8, 16 | syl3an1 1164 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝐴 ≈ 𝑥) |
18 | 7, 17 | jca 513 | . . . . . . . 8 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → (𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
19 | 18 | 3expa 1119 | . . . . . . 7 ⊢ (((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴) → (𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
20 | 19 | eximi 1838 | . . . . . 6 ⊢ (∃𝑥((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
21 | 6, 20 | sylbir 234 | . . . . 5 ⊢ ((∃𝑥(𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
22 | 3, 5, 21 | syl2an2 685 | . . . 4 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
23 | df-rex 3072 | . . . 4 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) | |
24 | 22, 23 | sylibr 233 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
25 | isfi 8972 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
26 | 24, 25 | sylibr 233 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin) |
27 | 26 | ancoms 460 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 ∃wex 1782 ∈ wcel 2107 ∃wrex 3071 class class class wbr 5149 ωcom 7855 ≈ cen 8936 Fincfn 8939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-om 7856 df-1o 8466 df-en 8940 df-fin 8943 |
This theorem is referenced by: enfi 9190 domfi 9192 entrfi 9193 entrfir 9194 domsdomtrfi 9205 f1finf1o 9271 en1eqsnOLD 9275 isfinite2 9301 xpfiOLD 9318 fofinf1o 9327 cnvfiALT 9334 f1dmvrnfibi 9336 pwfiOLD 9347 cantnfcl 9662 en2eqpr 10002 fzfi 13937 hasheni 14308 fz1isolem 14422 isercolllem2 15612 isercoll 15614 summolem2 15662 zsum 15664 prodmolem2 15879 zprod 15881 bitsf1 16387 simpgnsgd 19970 ovoliunlem1 25019 wlksnfi 29161 eupthfi 29458 eulerpartlemgs2 33379 derangenlem 34162 erdsze2lem2 34195 heicant 36523 sticksstones18 40980 sticksstones19 40981 |
Copyright terms: Public domain | W3C validator |