![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enfii | Structured version Visualization version GIF version |
Description: A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5383. (Revised by BTernaryTau, 23-Sep-2024.) |
Ref | Expression |
---|---|
enfii | ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 9036 | . . . . . 6 ⊢ (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) | |
2 | df-rex 3077 | . . . . . 6 ⊢ (∃𝑥 ∈ ω 𝐵 ≈ 𝑥 ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥)) | |
3 | 1, 2 | sylbb 219 | . . . . 5 ⊢ (𝐵 ∈ Fin → ∃𝑥(𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥)) |
4 | ensymfib 9250 | . . . . . 6 ⊢ (𝐵 ∈ Fin → (𝐵 ≈ 𝐴 ↔ 𝐴 ≈ 𝐵)) | |
5 | 4 | biimparc 479 | . . . . 5 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐵 ≈ 𝐴) |
6 | 19.41v 1949 | . . . . . 6 ⊢ (∃𝑥((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴) ↔ (∃𝑥(𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴)) | |
7 | simp1 1136 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝑥 ∈ ω) | |
8 | nnfi 9233 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ω → 𝑥 ∈ Fin) | |
9 | ensymfib 9250 | . . . . . . . . . . . . . 14 ⊢ (𝑥 ∈ Fin → (𝑥 ≈ 𝐵 ↔ 𝐵 ≈ 𝑥)) | |
10 | 9 | biimpar 477 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥) → 𝑥 ≈ 𝐵) |
11 | 10 | 3adant3 1132 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝑥 ≈ 𝐵) |
12 | entrfil 9251 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ Fin ∧ 𝑥 ≈ 𝐵 ∧ 𝐵 ≈ 𝐴) → 𝑥 ≈ 𝐴) | |
13 | 11, 12 | syld3an2 1411 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝑥 ≈ 𝐴) |
14 | ensymfib 9250 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ Fin → (𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥)) | |
15 | 14 | 3ad2ant1 1133 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → (𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥)) |
16 | 13, 15 | mpbid 232 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝐴 ≈ 𝑥) |
17 | 8, 16 | syl3an1 1163 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝐴 ≈ 𝑥) |
18 | 7, 17 | jca 511 | . . . . . . . 8 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → (𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
19 | 18 | 3expa 1118 | . . . . . . 7 ⊢ (((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴) → (𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
20 | 19 | eximi 1833 | . . . . . 6 ⊢ (∃𝑥((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
21 | 6, 20 | sylbir 235 | . . . . 5 ⊢ ((∃𝑥(𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
22 | 3, 5, 21 | syl2an2 685 | . . . 4 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
23 | df-rex 3077 | . . . 4 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) | |
24 | 22, 23 | sylibr 234 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
25 | isfi 9036 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
26 | 24, 25 | sylibr 234 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin) |
27 | 26 | ancoms 458 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 class class class wbr 5166 ωcom 7903 ≈ cen 9000 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-en 9004 df-fin 9007 |
This theorem is referenced by: enfi 9253 domfi 9255 entrfi 9256 entrfir 9257 domsdomtrfi 9268 f1finf1o 9333 en1eqsnOLD 9337 isfinite2 9362 xpfiOLD 9387 fofinf1o 9400 cnvfiALT 9407 f1dmvrnfibi 9409 pwfiOLD 9417 cantnfcl 9736 en2eqpr 10076 fzfi 14023 hasheni 14397 fz1isolem 14510 isercolllem2 15714 isercoll 15716 summolem2 15764 zsum 15766 prodmolem2 15983 zprod 15985 bitsf1 16492 simpgnsgd 20144 ovoliunlem1 25556 wlksnfi 29940 eupthfi 30237 eulerpartlemgs2 34345 derangenlem 35139 erdsze2lem2 35172 heicant 37615 sticksstones18 42121 sticksstones19 42122 |
Copyright terms: Public domain | W3C validator |