Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > enfii | Structured version Visualization version GIF version |
Description: A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5288. (Revised by BTernaryTau, 23-Sep-2024.) |
Ref | Expression |
---|---|
enfii | ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 8764 | . . . . . 6 ⊢ (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵 ≈ 𝑥) | |
2 | df-rex 3070 | . . . . . 6 ⊢ (∃𝑥 ∈ ω 𝐵 ≈ 𝑥 ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥)) | |
3 | 1, 2 | sylbb 218 | . . . . 5 ⊢ (𝐵 ∈ Fin → ∃𝑥(𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥)) |
4 | ensymfib 8970 | . . . . . 6 ⊢ (𝐵 ∈ Fin → (𝐵 ≈ 𝐴 ↔ 𝐴 ≈ 𝐵)) | |
5 | 4 | biimparc 480 | . . . . 5 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐵 ≈ 𝐴) |
6 | 19.41v 1953 | . . . . . 6 ⊢ (∃𝑥((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴) ↔ (∃𝑥(𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴)) | |
7 | simp1 1135 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝑥 ∈ ω) | |
8 | nnfi 8950 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ω → 𝑥 ∈ Fin) | |
9 | ensymfib 8970 | . . . . . . . . . . . . . 14 ⊢ (𝑥 ∈ Fin → (𝑥 ≈ 𝐵 ↔ 𝐵 ≈ 𝑥)) | |
10 | 9 | biimpar 478 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥) → 𝑥 ≈ 𝐵) |
11 | 10 | 3adant3 1131 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝑥 ≈ 𝐵) |
12 | entrfil 8971 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ Fin ∧ 𝑥 ≈ 𝐵 ∧ 𝐵 ≈ 𝐴) → 𝑥 ≈ 𝐴) | |
13 | 11, 12 | syld3an2 1410 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝑥 ≈ 𝐴) |
14 | ensymfib 8970 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ Fin → (𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥)) | |
15 | 14 | 3ad2ant1 1132 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → (𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥)) |
16 | 13, 15 | mpbid 231 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝐴 ≈ 𝑥) |
17 | 8, 16 | syl3an1 1162 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → 𝐴 ≈ 𝑥) |
18 | 7, 17 | jca 512 | . . . . . . . 8 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥 ∧ 𝐵 ≈ 𝐴) → (𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
19 | 18 | 3expa 1117 | . . . . . . 7 ⊢ (((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴) → (𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
20 | 19 | eximi 1837 | . . . . . 6 ⊢ (∃𝑥((𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
21 | 6, 20 | sylbir 234 | . . . . 5 ⊢ ((∃𝑥(𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥) ∧ 𝐵 ≈ 𝐴) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
22 | 3, 5, 21 | syl2an2 683 | . . . 4 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) |
23 | df-rex 3070 | . . . 4 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥)) | |
24 | 22, 23 | sylibr 233 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
25 | isfi 8764 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
26 | 24, 25 | sylibr 233 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin) |
27 | 26 | ancoms 459 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 class class class wbr 5074 ωcom 7712 ≈ cen 8730 Fincfn 8733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-en 8734 df-fin 8737 |
This theorem is referenced by: enfi 8973 domfi 8975 entrfi 8976 entrfir 8977 domsdomtrfi 8988 en1eqsn 9048 isfinite2 9072 xpfi 9085 fofinf1o 9094 cnvfiALT 9101 f1dmvrnfibi 9103 pwfiOLD 9114 cantnfcl 9425 en2eqpr 9763 fzfi 13692 hasheni 14062 fz1isolem 14175 isercolllem2 15377 isercoll 15379 summolem2 15428 zsum 15430 prodmolem2 15645 zprod 15647 bitsf1 16153 simpgnsgd 19703 ovoliunlem1 24666 wlksnfi 28272 eupthfi 28569 eulerpartlemgs2 32347 derangenlem 33133 erdsze2lem2 33166 heicant 35812 sticksstones18 40120 sticksstones19 40121 |
Copyright terms: Public domain | W3C validator |