MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enfii Structured version   Visualization version   GIF version

Theorem enfii 9156
Description: A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5323. (Revised by BTernaryTau, 23-Sep-2024.)
Assertion
Ref Expression
enfii ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)

Proof of Theorem enfii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfi 8950 . . . . . 6 (𝐵 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐵𝑥)
2 df-rex 3055 . . . . . 6 (∃𝑥 ∈ ω 𝐵𝑥 ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝐵𝑥))
31, 2sylbb 219 . . . . 5 (𝐵 ∈ Fin → ∃𝑥(𝑥 ∈ ω ∧ 𝐵𝑥))
4 ensymfib 9154 . . . . . 6 (𝐵 ∈ Fin → (𝐵𝐴𝐴𝐵))
54biimparc 479 . . . . 5 ((𝐴𝐵𝐵 ∈ Fin) → 𝐵𝐴)
6 19.41v 1949 . . . . . 6 (∃𝑥((𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴) ↔ (∃𝑥(𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴))
7 simp1 1136 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝐵𝑥𝐵𝐴) → 𝑥 ∈ ω)
8 nnfi 9137 . . . . . . . . . 10 (𝑥 ∈ ω → 𝑥 ∈ Fin)
9 ensymfib 9154 . . . . . . . . . . . . . 14 (𝑥 ∈ Fin → (𝑥𝐵𝐵𝑥))
109biimpar 477 . . . . . . . . . . . . 13 ((𝑥 ∈ Fin ∧ 𝐵𝑥) → 𝑥𝐵)
11103adant3 1132 . . . . . . . . . . . 12 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐵𝐴) → 𝑥𝐵)
12 entrfil 9155 . . . . . . . . . . . 12 ((𝑥 ∈ Fin ∧ 𝑥𝐵𝐵𝐴) → 𝑥𝐴)
1311, 12syld3an2 1413 . . . . . . . . . . 11 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐵𝐴) → 𝑥𝐴)
14 ensymfib 9154 . . . . . . . . . . . 12 (𝑥 ∈ Fin → (𝑥𝐴𝐴𝑥))
15143ad2ant1 1133 . . . . . . . . . . 11 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐵𝐴) → (𝑥𝐴𝐴𝑥))
1613, 15mpbid 232 . . . . . . . . . 10 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐵𝐴) → 𝐴𝑥)
178, 16syl3an1 1163 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝐵𝑥𝐵𝐴) → 𝐴𝑥)
187, 17jca 511 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝐵𝑥𝐵𝐴) → (𝑥 ∈ ω ∧ 𝐴𝑥))
19183expa 1118 . . . . . . 7 (((𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴) → (𝑥 ∈ ω ∧ 𝐴𝑥))
2019eximi 1835 . . . . . 6 (∃𝑥((𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴𝑥))
216, 20sylbir 235 . . . . 5 ((∃𝑥(𝑥 ∈ ω ∧ 𝐵𝑥) ∧ 𝐵𝐴) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴𝑥))
223, 5, 21syl2an2 686 . . . 4 ((𝐴𝐵𝐵 ∈ Fin) → ∃𝑥(𝑥 ∈ ω ∧ 𝐴𝑥))
23 df-rex 3055 . . . 4 (∃𝑥 ∈ ω 𝐴𝑥 ↔ ∃𝑥(𝑥 ∈ ω ∧ 𝐴𝑥))
2422, 23sylibr 234 . . 3 ((𝐴𝐵𝐵 ∈ Fin) → ∃𝑥 ∈ ω 𝐴𝑥)
25 isfi 8950 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2624, 25sylibr 234 . 2 ((𝐴𝐵𝐵 ∈ Fin) → 𝐴 ∈ Fin)
2726ancoms 458 1 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wex 1779  wcel 2109  wrex 3054   class class class wbr 5110  ωcom 7845  cen 8918  Fincfn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-en 8922  df-fin 8925
This theorem is referenced by:  enfi  9157  domfi  9159  entrfi  9160  entrfir  9161  domsdomtrfi  9172  f1finf1o  9223  en1eqsnOLD  9227  isfinite2  9252  xpfiOLD  9277  fofinf1o  9290  cnvfiALT  9297  f1dmvrnfibi  9299  cantnfcl  9627  en2eqpr  9967  fzfi  13944  hasheni  14320  fz1isolem  14433  isercolllem2  15639  isercoll  15641  summolem2  15689  zsum  15691  prodmolem2  15908  zprod  15910  bitsf1  16423  simpgnsgd  20039  ovoliunlem1  25410  wlksnfi  29844  eupthfi  30141  eulerpartlemgs2  34378  derangenlem  35165  erdsze2lem2  35198  heicant  37656  sticksstones18  42159  sticksstones19  42160
  Copyright terms: Public domain W3C validator