MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islp3 Structured version   Visualization version   GIF version

Theorem islp3 23099
Description: The predicate "𝑃 is a limit point of 𝑆 " in terms of open sets. see islp2 23098, elcls 23026, islp 23093. (Contributed by FL, 31-Jul-2009.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
islp3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑃   𝑥,𝑆   𝑥,𝑋

Proof of Theorem islp3
StepHypRef Expression
1 lpfval.1 . . . 4 𝑋 = 𝐽
21islp 23093 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))))
323adant3 1129 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))))
4 simp2 1134 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → 𝑆𝑋)
54ssdifssd 4139 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑆 ∖ {𝑃}) ⊆ 𝑋)
61elcls 23026 . . 3 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑃}) ⊆ 𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
75, 6syld3an2 1408 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
83, 7bitrd 278 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wral 3050  cdif 3941  cin 3943  wss 3944  c0 4322  {csn 4630   cuni 4909  cfv 6549  Topctop 22844  clsccl 22971  limPtclp 23087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-top 22845  df-cld 22972  df-ntr 22973  df-cls 22974  df-lp 23089
This theorem is referenced by:  bwth  23363  nlpineqsn  37020  poimirlem30  37256
  Copyright terms: Public domain W3C validator