![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islp3 | Structured version Visualization version GIF version |
Description: The predicate "π is a limit point of π " in terms of open sets. see islp2 22969, elcls 22897, islp 22964. (Contributed by FL, 31-Jul-2009.) |
Ref | Expression |
---|---|
lpfval.1 | β’ π = βͺ π½ |
Ref | Expression |
---|---|
islp3 | β’ ((π½ β Top β§ π β π β§ π β π) β (π β ((limPtβπ½)βπ) β βπ₯ β π½ (π β π₯ β (π₯ β© (π β {π})) β β ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpfval.1 | . . . 4 β’ π = βͺ π½ | |
2 | 1 | islp 22964 | . . 3 β’ ((π½ β Top β§ π β π) β (π β ((limPtβπ½)βπ) β π β ((clsβπ½)β(π β {π})))) |
3 | 2 | 3adant3 1131 | . 2 β’ ((π½ β Top β§ π β π β§ π β π) β (π β ((limPtβπ½)βπ) β π β ((clsβπ½)β(π β {π})))) |
4 | simp2 1136 | . . . 4 β’ ((π½ β Top β§ π β π β§ π β π) β π β π) | |
5 | 4 | ssdifssd 4142 | . . 3 β’ ((π½ β Top β§ π β π β§ π β π) β (π β {π}) β π) |
6 | 1 | elcls 22897 | . . 3 β’ ((π½ β Top β§ (π β {π}) β π β§ π β π) β (π β ((clsβπ½)β(π β {π})) β βπ₯ β π½ (π β π₯ β (π₯ β© (π β {π})) β β ))) |
7 | 5, 6 | syld3an2 1410 | . 2 β’ ((π½ β Top β§ π β π β§ π β π) β (π β ((clsβπ½)β(π β {π})) β βπ₯ β π½ (π β π₯ β (π₯ β© (π β {π})) β β ))) |
8 | 3, 7 | bitrd 279 | 1 β’ ((π½ β Top β§ π β π β§ π β π) β (π β ((limPtβπ½)βπ) β βπ₯ β π½ (π β π₯ β (π₯ β© (π β {π})) β β ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1086 = wceq 1540 β wcel 2105 β wne 2939 βwral 3060 β cdif 3945 β© cin 3947 β wss 3948 β c0 4322 {csn 4628 βͺ cuni 4908 βcfv 6543 Topctop 22715 clsccl 22842 limPtclp 22958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-top 22716 df-cld 22843 df-ntr 22844 df-cls 22845 df-lp 22960 |
This theorem is referenced by: bwth 23234 nlpineqsn 36753 poimirlem30 36982 |
Copyright terms: Public domain | W3C validator |