MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islp3 Structured version   Visualization version   GIF version

Theorem islp3 21754
Description: The predicate "𝑃 is a limit point of 𝑆 " in terms of open sets. see islp2 21753, elcls 21681, islp 21748. (Contributed by FL, 31-Jul-2009.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
islp3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑃   𝑥,𝑆   𝑥,𝑋

Proof of Theorem islp3
StepHypRef Expression
1 lpfval.1 . . . 4 𝑋 = 𝐽
21islp 21748 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))))
323adant3 1128 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))))
4 simp2 1133 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → 𝑆𝑋)
54ssdifssd 4119 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑆 ∖ {𝑃}) ⊆ 𝑋)
61elcls 21681 . . 3 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑃}) ⊆ 𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
75, 6syld3an2 1407 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
83, 7bitrd 281 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  cdif 3933  cin 3935  wss 3936  c0 4291  {csn 4567   cuni 4838  cfv 6355  Topctop 21501  clsccl 21626  limPtclp 21742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-top 21502  df-cld 21627  df-ntr 21628  df-cls 21629  df-lp 21744
This theorem is referenced by:  bwth  22018  nlpineqsn  34692  poimirlem30  34937
  Copyright terms: Public domain W3C validator