MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islp3 Structured version   Visualization version   GIF version

Theorem islp3 22297
Description: The predicate "𝑃 is a limit point of 𝑆 " in terms of open sets. see islp2 22296, elcls 22224, islp 22291. (Contributed by FL, 31-Jul-2009.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
islp3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑃   𝑥,𝑆   𝑥,𝑋

Proof of Theorem islp3
StepHypRef Expression
1 lpfval.1 . . . 4 𝑋 = 𝐽
21islp 22291 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))))
323adant3 1131 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))))
4 simp2 1136 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → 𝑆𝑋)
54ssdifssd 4077 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑆 ∖ {𝑃}) ⊆ 𝑋)
61elcls 22224 . . 3 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑃}) ⊆ 𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
75, 6syld3an2 1410 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
83, 7bitrd 278 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  cdif 3884  cin 3886  wss 3887  c0 4256  {csn 4561   cuni 4839  cfv 6433  Topctop 22042  clsccl 22169  limPtclp 22285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-top 22043  df-cld 22170  df-ntr 22171  df-cls 22172  df-lp 22287
This theorem is referenced by:  bwth  22561  nlpineqsn  35579  poimirlem30  35807
  Copyright terms: Public domain W3C validator