Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk4 Structured version   Visualization version   GIF version

Theorem cdlemk4 38848
Description: Part of proof of Lemma K of [Crawley] p. 118, last line. We use 𝑋 for their h, since 𝐻 is already used. (Contributed by NM, 24-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b 𝐵 = (Base‘𝐾)
cdlemk.l = (le‘𝐾)
cdlemk.j = (join‘𝐾)
cdlemk.a 𝐴 = (Atoms‘𝐾)
cdlemk.h 𝐻 = (LHyp‘𝐾)
cdlemk.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk.m = (meet‘𝐾)
Assertion
Ref Expression
cdlemk4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ((𝑋𝑃) (𝑅‘(𝑋𝐹))))

Proof of Theorem cdlemk4
StepHypRef Expression
1 simp1l 1196 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
2 simp1 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp2l 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
4 simp3l 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
5 cdlemk.l . . . . 5 = (le‘𝐾)
6 cdlemk.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 cdlemk.h . . . . 5 𝐻 = (LHyp‘𝐾)
8 cdlemk.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
95, 6, 7, 8ltrnat 38154 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
102, 3, 4, 9syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ 𝐴)
11 simp2r 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑋𝑇)
125, 6, 7, 8ltrnat 38154 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇𝑃𝐴) → (𝑋𝑃) ∈ 𝐴)
132, 11, 4, 12syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) ∈ 𝐴)
14 cdlemk.j . . . 4 = (join‘𝐾)
155, 14, 6hlatlej1 37389 . . 3 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ (𝑋𝑃) ∈ 𝐴) → (𝐹𝑃) ((𝐹𝑃) (𝑋𝑃)))
161, 10, 13, 15syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ((𝐹𝑃) (𝑋𝑃)))
171hllatd 37378 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
18 cdlemk.b . . . . . . 7 𝐵 = (Base‘𝐾)
1918, 6atbase 37303 . . . . . 6 ((𝐹𝑃) ∈ 𝐴 → (𝐹𝑃) ∈ 𝐵)
2010, 19syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ 𝐵)
2118, 6atbase 37303 . . . . . 6 ((𝑋𝑃) ∈ 𝐴 → (𝑋𝑃) ∈ 𝐵)
2213, 21syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) ∈ 𝐵)
2318, 14latjcl 18157 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝑃) ∈ 𝐵 ∧ (𝑋𝑃) ∈ 𝐵) → ((𝐹𝑃) (𝑋𝑃)) ∈ 𝐵)
2417, 20, 22, 23syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑋𝑃)) ∈ 𝐵)
25 simp1r 1197 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
2618, 7lhpbase 38012 . . . . 5 (𝑊𝐻𝑊𝐵)
2725, 26syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐵)
285, 14, 6hlatlej2 37390 . . . . 5 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ (𝑋𝑃) ∈ 𝐴) → (𝑋𝑃) ((𝐹𝑃) (𝑋𝑃)))
291, 10, 13, 28syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) ((𝐹𝑃) (𝑋𝑃)))
30 cdlemk.m . . . . 5 = (meet‘𝐾)
3118, 5, 14, 30, 6atmod3i1 37878 . . . 4 ((𝐾 ∈ HL ∧ ((𝑋𝑃) ∈ 𝐴 ∧ ((𝐹𝑃) (𝑋𝑃)) ∈ 𝐵𝑊𝐵) ∧ (𝑋𝑃) ((𝐹𝑃) (𝑋𝑃))) → ((𝑋𝑃) (((𝐹𝑃) (𝑋𝑃)) 𝑊)) = (((𝐹𝑃) (𝑋𝑃)) ((𝑋𝑃) 𝑊)))
321, 13, 24, 27, 29, 31syl131anc 1382 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) (((𝐹𝑃) (𝑋𝑃)) 𝑊)) = (((𝐹𝑃) (𝑋𝑃)) ((𝑋𝑃) 𝑊)))
337, 8ltrncnv 38160 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
342, 3, 33syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
357, 8ltrnco 38733 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇𝐹𝑇) → (𝑋𝐹) ∈ 𝑇)
362, 11, 34, 35syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝐹) ∈ 𝑇)
375, 6, 7, 8ltrnel 38153 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
383, 37syld3an2 1410 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
39 cdlemk.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
405, 14, 30, 6, 7, 8, 39trlval2 38177 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐹) ∈ 𝑇 ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → (𝑅‘(𝑋𝐹)) = (((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))) 𝑊))
412, 36, 38, 40syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑋𝐹)) = (((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))) 𝑊))
4218, 7, 8ltrn1o 38138 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
432, 3, 42syl2anc 584 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹:𝐵1-1-onto𝐵)
44 f1ococnv1 6745 . . . . . . . . . . . . . 14 (𝐹:𝐵1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
4543, 44syl 17 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝐹) = ( I ↾ 𝐵))
4645coeq2d 5771 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋 ∘ (𝐹𝐹)) = (𝑋 ∘ ( I ↾ 𝐵)))
4718, 7, 8ltrn1o 38138 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → 𝑋:𝐵1-1-onto𝐵)
482, 11, 47syl2anc 584 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑋:𝐵1-1-onto𝐵)
49 f1of 6716 . . . . . . . . . . . . 13 (𝑋:𝐵1-1-onto𝐵𝑋:𝐵𝐵)
50 fcoi1 6648 . . . . . . . . . . . . 13 (𝑋:𝐵𝐵 → (𝑋 ∘ ( I ↾ 𝐵)) = 𝑋)
5148, 49, 503syl 18 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋 ∘ ( I ↾ 𝐵)) = 𝑋)
5246, 51eqtr2d 2779 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑋 = (𝑋 ∘ (𝐹𝐹)))
53 coass 6169 . . . . . . . . . . 11 ((𝑋𝐹) ∘ 𝐹) = (𝑋 ∘ (𝐹𝐹))
5452, 53eqtr4di 2796 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑋 = ((𝑋𝐹) ∘ 𝐹))
5554fveq1d 6776 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) = (((𝑋𝐹) ∘ 𝐹)‘𝑃))
565, 6, 7, 8ltrncoval 38159 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐹) ∈ 𝑇𝐹𝑇) ∧ 𝑃𝐴) → (((𝑋𝐹) ∘ 𝐹)‘𝑃) = ((𝑋𝐹)‘(𝐹𝑃)))
572, 36, 3, 4, 56syl121anc 1374 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑋𝐹) ∘ 𝐹)‘𝑃) = ((𝑋𝐹)‘(𝐹𝑃)))
5855, 57eqtrd 2778 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) = ((𝑋𝐹)‘(𝐹𝑃)))
5958oveq2d 7291 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑋𝑃)) = ((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))))
6059eqcomd 2744 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))) = ((𝐹𝑃) (𝑋𝑃)))
6160oveq1d 7290 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))) 𝑊) = (((𝐹𝑃) (𝑋𝑃)) 𝑊))
6241, 61eqtrd 2778 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑋𝐹)) = (((𝐹𝑃) (𝑋𝑃)) 𝑊))
6362oveq2d 7291 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) (𝑅‘(𝑋𝐹))) = ((𝑋𝑃) (((𝐹𝑃) (𝑋𝑃)) 𝑊)))
645, 6, 7, 8ltrnel 38153 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) ∈ 𝐴 ∧ ¬ (𝑋𝑃) 𝑊))
6511, 64syld3an2 1410 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) ∈ 𝐴 ∧ ¬ (𝑋𝑃) 𝑊))
66 eqid 2738 . . . . . . 7 (1.‘𝐾) = (1.‘𝐾)
675, 14, 66, 6, 7lhpjat2 38035 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝑃) ∈ 𝐴 ∧ ¬ (𝑋𝑃) 𝑊)) → ((𝑋𝑃) 𝑊) = (1.‘𝐾))
682, 65, 67syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) 𝑊) = (1.‘𝐾))
6968oveq2d 7291 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) (𝑋𝑃)) ((𝑋𝑃) 𝑊)) = (((𝐹𝑃) (𝑋𝑃)) (1.‘𝐾)))
70 hlol 37375 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OL)
711, 70syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OL)
7218, 30, 66olm11 37241 . . . . 5 ((𝐾 ∈ OL ∧ ((𝐹𝑃) (𝑋𝑃)) ∈ 𝐵) → (((𝐹𝑃) (𝑋𝑃)) (1.‘𝐾)) = ((𝐹𝑃) (𝑋𝑃)))
7371, 24, 72syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) (𝑋𝑃)) (1.‘𝐾)) = ((𝐹𝑃) (𝑋𝑃)))
7469, 73eqtr2d 2779 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑋𝑃)) = (((𝐹𝑃) (𝑋𝑃)) ((𝑋𝑃) 𝑊)))
7532, 63, 743eqtr4rd 2789 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑋𝑃)) = ((𝑋𝑃) (𝑅‘(𝑋𝐹))))
7616, 75breqtrd 5100 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ((𝑋𝑃) (𝑅‘(𝑋𝐹))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074   I cid 5488  ccnv 5588  cres 5591  ccom 5593  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  1.cp1 18142  Latclat 18149  OLcol 37188  Atomscatm 37277  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  trLctrl 38172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-undef 8089  df-map 8617  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173
This theorem is referenced by:  cdlemk5a  38849
  Copyright terms: Public domain W3C validator