Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk4 Structured version   Visualization version   GIF version

Theorem cdlemk4 38842
Description: Part of proof of Lemma K of [Crawley] p. 118, last line. We use 𝑋 for their h, since 𝐻 is already used. (Contributed by NM, 24-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b 𝐵 = (Base‘𝐾)
cdlemk.l = (le‘𝐾)
cdlemk.j = (join‘𝐾)
cdlemk.a 𝐴 = (Atoms‘𝐾)
cdlemk.h 𝐻 = (LHyp‘𝐾)
cdlemk.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk.m = (meet‘𝐾)
Assertion
Ref Expression
cdlemk4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ((𝑋𝑃) (𝑅‘(𝑋𝐹))))

Proof of Theorem cdlemk4
StepHypRef Expression
1 simp1l 1196 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
2 simp1 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp2l 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
4 simp3l 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
5 cdlemk.l . . . . 5 = (le‘𝐾)
6 cdlemk.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 cdlemk.h . . . . 5 𝐻 = (LHyp‘𝐾)
8 cdlemk.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
95, 6, 7, 8ltrnat 38148 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
102, 3, 4, 9syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ 𝐴)
11 simp2r 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑋𝑇)
125, 6, 7, 8ltrnat 38148 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇𝑃𝐴) → (𝑋𝑃) ∈ 𝐴)
132, 11, 4, 12syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) ∈ 𝐴)
14 cdlemk.j . . . 4 = (join‘𝐾)
155, 14, 6hlatlej1 37383 . . 3 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ (𝑋𝑃) ∈ 𝐴) → (𝐹𝑃) ((𝐹𝑃) (𝑋𝑃)))
161, 10, 13, 15syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ((𝐹𝑃) (𝑋𝑃)))
171hllatd 37372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
18 cdlemk.b . . . . . . 7 𝐵 = (Base‘𝐾)
1918, 6atbase 37297 . . . . . 6 ((𝐹𝑃) ∈ 𝐴 → (𝐹𝑃) ∈ 𝐵)
2010, 19syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ 𝐵)
2118, 6atbase 37297 . . . . . 6 ((𝑋𝑃) ∈ 𝐴 → (𝑋𝑃) ∈ 𝐵)
2213, 21syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) ∈ 𝐵)
2318, 14latjcl 18153 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝑃) ∈ 𝐵 ∧ (𝑋𝑃) ∈ 𝐵) → ((𝐹𝑃) (𝑋𝑃)) ∈ 𝐵)
2417, 20, 22, 23syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑋𝑃)) ∈ 𝐵)
25 simp1r 1197 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
2618, 7lhpbase 38006 . . . . 5 (𝑊𝐻𝑊𝐵)
2725, 26syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐵)
285, 14, 6hlatlej2 37384 . . . . 5 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ (𝑋𝑃) ∈ 𝐴) → (𝑋𝑃) ((𝐹𝑃) (𝑋𝑃)))
291, 10, 13, 28syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) ((𝐹𝑃) (𝑋𝑃)))
30 cdlemk.m . . . . 5 = (meet‘𝐾)
3118, 5, 14, 30, 6atmod3i1 37872 . . . 4 ((𝐾 ∈ HL ∧ ((𝑋𝑃) ∈ 𝐴 ∧ ((𝐹𝑃) (𝑋𝑃)) ∈ 𝐵𝑊𝐵) ∧ (𝑋𝑃) ((𝐹𝑃) (𝑋𝑃))) → ((𝑋𝑃) (((𝐹𝑃) (𝑋𝑃)) 𝑊)) = (((𝐹𝑃) (𝑋𝑃)) ((𝑋𝑃) 𝑊)))
321, 13, 24, 27, 29, 31syl131anc 1382 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) (((𝐹𝑃) (𝑋𝑃)) 𝑊)) = (((𝐹𝑃) (𝑋𝑃)) ((𝑋𝑃) 𝑊)))
337, 8ltrncnv 38154 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
342, 3, 33syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
357, 8ltrnco 38727 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇𝐹𝑇) → (𝑋𝐹) ∈ 𝑇)
362, 11, 34, 35syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝐹) ∈ 𝑇)
375, 6, 7, 8ltrnel 38147 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
383, 37syld3an2 1410 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
39 cdlemk.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
405, 14, 30, 6, 7, 8, 39trlval2 38171 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐹) ∈ 𝑇 ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → (𝑅‘(𝑋𝐹)) = (((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))) 𝑊))
412, 36, 38, 40syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑋𝐹)) = (((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))) 𝑊))
4218, 7, 8ltrn1o 38132 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
432, 3, 42syl2anc 584 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹:𝐵1-1-onto𝐵)
44 f1ococnv1 6741 . . . . . . . . . . . . . 14 (𝐹:𝐵1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
4543, 44syl 17 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝐹) = ( I ↾ 𝐵))
4645coeq2d 5769 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋 ∘ (𝐹𝐹)) = (𝑋 ∘ ( I ↾ 𝐵)))
4718, 7, 8ltrn1o 38132 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → 𝑋:𝐵1-1-onto𝐵)
482, 11, 47syl2anc 584 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑋:𝐵1-1-onto𝐵)
49 f1of 6713 . . . . . . . . . . . . 13 (𝑋:𝐵1-1-onto𝐵𝑋:𝐵𝐵)
50 fcoi1 6645 . . . . . . . . . . . . 13 (𝑋:𝐵𝐵 → (𝑋 ∘ ( I ↾ 𝐵)) = 𝑋)
5148, 49, 503syl 18 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋 ∘ ( I ↾ 𝐵)) = 𝑋)
5246, 51eqtr2d 2781 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑋 = (𝑋 ∘ (𝐹𝐹)))
53 coass 6167 . . . . . . . . . . 11 ((𝑋𝐹) ∘ 𝐹) = (𝑋 ∘ (𝐹𝐹))
5452, 53eqtr4di 2798 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑋 = ((𝑋𝐹) ∘ 𝐹))
5554fveq1d 6771 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) = (((𝑋𝐹) ∘ 𝐹)‘𝑃))
565, 6, 7, 8ltrncoval 38153 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐹) ∈ 𝑇𝐹𝑇) ∧ 𝑃𝐴) → (((𝑋𝐹) ∘ 𝐹)‘𝑃) = ((𝑋𝐹)‘(𝐹𝑃)))
572, 36, 3, 4, 56syl121anc 1374 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑋𝐹) ∘ 𝐹)‘𝑃) = ((𝑋𝐹)‘(𝐹𝑃)))
5855, 57eqtrd 2780 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) = ((𝑋𝐹)‘(𝐹𝑃)))
5958oveq2d 7285 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑋𝑃)) = ((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))))
6059eqcomd 2746 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))) = ((𝐹𝑃) (𝑋𝑃)))
6160oveq1d 7284 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))) 𝑊) = (((𝐹𝑃) (𝑋𝑃)) 𝑊))
6241, 61eqtrd 2780 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑋𝐹)) = (((𝐹𝑃) (𝑋𝑃)) 𝑊))
6362oveq2d 7285 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) (𝑅‘(𝑋𝐹))) = ((𝑋𝑃) (((𝐹𝑃) (𝑋𝑃)) 𝑊)))
645, 6, 7, 8ltrnel 38147 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) ∈ 𝐴 ∧ ¬ (𝑋𝑃) 𝑊))
6511, 64syld3an2 1410 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) ∈ 𝐴 ∧ ¬ (𝑋𝑃) 𝑊))
66 eqid 2740 . . . . . . 7 (1.‘𝐾) = (1.‘𝐾)
675, 14, 66, 6, 7lhpjat2 38029 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝑃) ∈ 𝐴 ∧ ¬ (𝑋𝑃) 𝑊)) → ((𝑋𝑃) 𝑊) = (1.‘𝐾))
682, 65, 67syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) 𝑊) = (1.‘𝐾))
6968oveq2d 7285 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) (𝑋𝑃)) ((𝑋𝑃) 𝑊)) = (((𝐹𝑃) (𝑋𝑃)) (1.‘𝐾)))
70 hlol 37369 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OL)
711, 70syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OL)
7218, 30, 66olm11 37235 . . . . 5 ((𝐾 ∈ OL ∧ ((𝐹𝑃) (𝑋𝑃)) ∈ 𝐵) → (((𝐹𝑃) (𝑋𝑃)) (1.‘𝐾)) = ((𝐹𝑃) (𝑋𝑃)))
7371, 24, 72syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) (𝑋𝑃)) (1.‘𝐾)) = ((𝐹𝑃) (𝑋𝑃)))
7469, 73eqtr2d 2781 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑋𝑃)) = (((𝐹𝑃) (𝑋𝑃)) ((𝑋𝑃) 𝑊)))
7532, 63, 743eqtr4rd 2791 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑋𝑃)) = ((𝑋𝑃) (𝑅‘(𝑋𝐹))))
7616, 75breqtrd 5105 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ((𝑋𝑃) (𝑅‘(𝑋𝐹))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110   class class class wbr 5079   I cid 5488  ccnv 5588  cres 5591  ccom 5593  wf 6427  1-1-ontowf1o 6430  cfv 6431  (class class class)co 7269  Basecbs 16908  lecple 16965  joincjn 18025  meetcmee 18026  1.cp1 18138  Latclat 18145  OLcol 37182  Atomscatm 37271  HLchlt 37358  LHypclh 37992  LTrncltrn 38109  trLctrl 38166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-riotaBAD 36961
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-1st 7822  df-2nd 7823  df-undef 8078  df-map 8598  df-proset 18009  df-poset 18027  df-plt 18044  df-lub 18060  df-glb 18061  df-join 18062  df-meet 18063  df-p0 18139  df-p1 18140  df-lat 18146  df-clat 18213  df-oposet 37184  df-ol 37186  df-oml 37187  df-covers 37274  df-ats 37275  df-atl 37306  df-cvlat 37330  df-hlat 37359  df-llines 37506  df-lplanes 37507  df-lvols 37508  df-lines 37509  df-psubsp 37511  df-pmap 37512  df-padd 37804  df-lhyp 37996  df-laut 37997  df-ldil 38112  df-ltrn 38113  df-trl 38167
This theorem is referenced by:  cdlemk5a  38843
  Copyright terms: Public domain W3C validator