Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk4 Structured version   Visualization version   GIF version

Theorem cdlemk4 40795
Description: Part of proof of Lemma K of [Crawley] p. 118, last line. We use 𝑋 for their h, since 𝐻 is already used. (Contributed by NM, 24-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b 𝐵 = (Base‘𝐾)
cdlemk.l = (le‘𝐾)
cdlemk.j = (join‘𝐾)
cdlemk.a 𝐴 = (Atoms‘𝐾)
cdlemk.h 𝐻 = (LHyp‘𝐾)
cdlemk.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk.m = (meet‘𝐾)
Assertion
Ref Expression
cdlemk4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ((𝑋𝑃) (𝑅‘(𝑋𝐹))))

Proof of Theorem cdlemk4
StepHypRef Expression
1 simp1l 1197 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
2 simp1 1136 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp2l 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
4 simp3l 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
5 cdlemk.l . . . . 5 = (le‘𝐾)
6 cdlemk.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 cdlemk.h . . . . 5 𝐻 = (LHyp‘𝐾)
8 cdlemk.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
95, 6, 7, 8ltrnat 40101 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
102, 3, 4, 9syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ 𝐴)
11 simp2r 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑋𝑇)
125, 6, 7, 8ltrnat 40101 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇𝑃𝐴) → (𝑋𝑃) ∈ 𝐴)
132, 11, 4, 12syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) ∈ 𝐴)
14 cdlemk.j . . . 4 = (join‘𝐾)
155, 14, 6hlatlej1 39335 . . 3 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ (𝑋𝑃) ∈ 𝐴) → (𝐹𝑃) ((𝐹𝑃) (𝑋𝑃)))
161, 10, 13, 15syl3anc 1372 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ((𝐹𝑃) (𝑋𝑃)))
171hllatd 39324 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
18 cdlemk.b . . . . . . 7 𝐵 = (Base‘𝐾)
1918, 6atbase 39249 . . . . . 6 ((𝐹𝑃) ∈ 𝐴 → (𝐹𝑃) ∈ 𝐵)
2010, 19syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ 𝐵)
2118, 6atbase 39249 . . . . . 6 ((𝑋𝑃) ∈ 𝐴 → (𝑋𝑃) ∈ 𝐵)
2213, 21syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) ∈ 𝐵)
2318, 14latjcl 18453 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝑃) ∈ 𝐵 ∧ (𝑋𝑃) ∈ 𝐵) → ((𝐹𝑃) (𝑋𝑃)) ∈ 𝐵)
2417, 20, 22, 23syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑋𝑃)) ∈ 𝐵)
25 simp1r 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
2618, 7lhpbase 39959 . . . . 5 (𝑊𝐻𝑊𝐵)
2725, 26syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐵)
285, 14, 6hlatlej2 39336 . . . . 5 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ (𝑋𝑃) ∈ 𝐴) → (𝑋𝑃) ((𝐹𝑃) (𝑋𝑃)))
291, 10, 13, 28syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) ((𝐹𝑃) (𝑋𝑃)))
30 cdlemk.m . . . . 5 = (meet‘𝐾)
3118, 5, 14, 30, 6atmod3i1 39825 . . . 4 ((𝐾 ∈ HL ∧ ((𝑋𝑃) ∈ 𝐴 ∧ ((𝐹𝑃) (𝑋𝑃)) ∈ 𝐵𝑊𝐵) ∧ (𝑋𝑃) ((𝐹𝑃) (𝑋𝑃))) → ((𝑋𝑃) (((𝐹𝑃) (𝑋𝑃)) 𝑊)) = (((𝐹𝑃) (𝑋𝑃)) ((𝑋𝑃) 𝑊)))
321, 13, 24, 27, 29, 31syl131anc 1384 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) (((𝐹𝑃) (𝑋𝑃)) 𝑊)) = (((𝐹𝑃) (𝑋𝑃)) ((𝑋𝑃) 𝑊)))
337, 8ltrncnv 40107 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
342, 3, 33syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
357, 8ltrnco 40680 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇𝐹𝑇) → (𝑋𝐹) ∈ 𝑇)
362, 11, 34, 35syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝐹) ∈ 𝑇)
375, 6, 7, 8ltrnel 40100 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
383, 37syld3an2 1412 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
39 cdlemk.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
405, 14, 30, 6, 7, 8, 39trlval2 40124 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐹) ∈ 𝑇 ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → (𝑅‘(𝑋𝐹)) = (((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))) 𝑊))
412, 36, 38, 40syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑋𝐹)) = (((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))) 𝑊))
4218, 7, 8ltrn1o 40085 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
432, 3, 42syl2anc 584 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹:𝐵1-1-onto𝐵)
44 f1ococnv1 6857 . . . . . . . . . . . . . 14 (𝐹:𝐵1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
4543, 44syl 17 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝐹) = ( I ↾ 𝐵))
4645coeq2d 5853 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋 ∘ (𝐹𝐹)) = (𝑋 ∘ ( I ↾ 𝐵)))
4718, 7, 8ltrn1o 40085 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → 𝑋:𝐵1-1-onto𝐵)
482, 11, 47syl2anc 584 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑋:𝐵1-1-onto𝐵)
49 f1of 6828 . . . . . . . . . . . . 13 (𝑋:𝐵1-1-onto𝐵𝑋:𝐵𝐵)
50 fcoi1 6762 . . . . . . . . . . . . 13 (𝑋:𝐵𝐵 → (𝑋 ∘ ( I ↾ 𝐵)) = 𝑋)
5148, 49, 503syl 18 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋 ∘ ( I ↾ 𝐵)) = 𝑋)
5246, 51eqtr2d 2770 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑋 = (𝑋 ∘ (𝐹𝐹)))
53 coass 6265 . . . . . . . . . . 11 ((𝑋𝐹) ∘ 𝐹) = (𝑋 ∘ (𝐹𝐹))
5452, 53eqtr4di 2787 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑋 = ((𝑋𝐹) ∘ 𝐹))
5554fveq1d 6888 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) = (((𝑋𝐹) ∘ 𝐹)‘𝑃))
565, 6, 7, 8ltrncoval 40106 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐹) ∈ 𝑇𝐹𝑇) ∧ 𝑃𝐴) → (((𝑋𝐹) ∘ 𝐹)‘𝑃) = ((𝑋𝐹)‘(𝐹𝑃)))
572, 36, 3, 4, 56syl121anc 1376 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑋𝐹) ∘ 𝐹)‘𝑃) = ((𝑋𝐹)‘(𝐹𝑃)))
5855, 57eqtrd 2769 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) = ((𝑋𝐹)‘(𝐹𝑃)))
5958oveq2d 7429 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑋𝑃)) = ((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))))
6059eqcomd 2740 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))) = ((𝐹𝑃) (𝑋𝑃)))
6160oveq1d 7428 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))) 𝑊) = (((𝐹𝑃) (𝑋𝑃)) 𝑊))
6241, 61eqtrd 2769 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑋𝐹)) = (((𝐹𝑃) (𝑋𝑃)) 𝑊))
6362oveq2d 7429 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) (𝑅‘(𝑋𝐹))) = ((𝑋𝑃) (((𝐹𝑃) (𝑋𝑃)) 𝑊)))
645, 6, 7, 8ltrnel 40100 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) ∈ 𝐴 ∧ ¬ (𝑋𝑃) 𝑊))
6511, 64syld3an2 1412 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) ∈ 𝐴 ∧ ¬ (𝑋𝑃) 𝑊))
66 eqid 2734 . . . . . . 7 (1.‘𝐾) = (1.‘𝐾)
675, 14, 66, 6, 7lhpjat2 39982 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝑃) ∈ 𝐴 ∧ ¬ (𝑋𝑃) 𝑊)) → ((𝑋𝑃) 𝑊) = (1.‘𝐾))
682, 65, 67syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) 𝑊) = (1.‘𝐾))
6968oveq2d 7429 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) (𝑋𝑃)) ((𝑋𝑃) 𝑊)) = (((𝐹𝑃) (𝑋𝑃)) (1.‘𝐾)))
70 hlol 39321 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OL)
711, 70syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OL)
7218, 30, 66olm11 39187 . . . . 5 ((𝐾 ∈ OL ∧ ((𝐹𝑃) (𝑋𝑃)) ∈ 𝐵) → (((𝐹𝑃) (𝑋𝑃)) (1.‘𝐾)) = ((𝐹𝑃) (𝑋𝑃)))
7371, 24, 72syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) (𝑋𝑃)) (1.‘𝐾)) = ((𝐹𝑃) (𝑋𝑃)))
7469, 73eqtr2d 2770 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑋𝑃)) = (((𝐹𝑃) (𝑋𝑃)) ((𝑋𝑃) 𝑊)))
7532, 63, 743eqtr4rd 2780 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑋𝑃)) = ((𝑋𝑃) (𝑅‘(𝑋𝐹))))
7616, 75breqtrd 5149 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ((𝑋𝑃) (𝑅‘(𝑋𝐹))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5123   I cid 5557  ccnv 5664  cres 5667  ccom 5669  wf 6537  1-1-ontowf1o 6540  cfv 6541  (class class class)co 7413  Basecbs 17229  lecple 17280  joincjn 18327  meetcmee 18328  1.cp1 18438  Latclat 18445  OLcol 39134  Atomscatm 39223  HLchlt 39310  LHypclh 39945  LTrncltrn 40062  trLctrl 40119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-riotaBAD 38913
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-undef 8280  df-map 8850  df-proset 18310  df-poset 18329  df-plt 18344  df-lub 18360  df-glb 18361  df-join 18362  df-meet 18363  df-p0 18439  df-p1 18440  df-lat 18446  df-clat 18513  df-oposet 39136  df-ol 39138  df-oml 39139  df-covers 39226  df-ats 39227  df-atl 39258  df-cvlat 39282  df-hlat 39311  df-llines 39459  df-lplanes 39460  df-lvols 39461  df-lines 39462  df-psubsp 39464  df-pmap 39465  df-padd 39757  df-lhyp 39949  df-laut 39950  df-ldil 40065  df-ltrn 40066  df-trl 40120
This theorem is referenced by:  cdlemk5a  40796
  Copyright terms: Public domain W3C validator