Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk4 Structured version   Visualization version   GIF version

Theorem cdlemk4 37974
Description: Part of proof of Lemma K of [Crawley] p. 118, last line. We use 𝑋 for their h, since 𝐻 is already used. (Contributed by NM, 24-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b 𝐵 = (Base‘𝐾)
cdlemk.l = (le‘𝐾)
cdlemk.j = (join‘𝐾)
cdlemk.a 𝐴 = (Atoms‘𝐾)
cdlemk.h 𝐻 = (LHyp‘𝐾)
cdlemk.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk.m = (meet‘𝐾)
Assertion
Ref Expression
cdlemk4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ((𝑋𝑃) (𝑅‘(𝑋𝐹))))

Proof of Theorem cdlemk4
StepHypRef Expression
1 simp1l 1193 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
2 simp1 1132 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp2l 1195 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
4 simp3l 1197 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
5 cdlemk.l . . . . 5 = (le‘𝐾)
6 cdlemk.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 cdlemk.h . . . . 5 𝐻 = (LHyp‘𝐾)
8 cdlemk.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
95, 6, 7, 8ltrnat 37280 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
102, 3, 4, 9syl3anc 1367 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ 𝐴)
11 simp2r 1196 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑋𝑇)
125, 6, 7, 8ltrnat 37280 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇𝑃𝐴) → (𝑋𝑃) ∈ 𝐴)
132, 11, 4, 12syl3anc 1367 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) ∈ 𝐴)
14 cdlemk.j . . . 4 = (join‘𝐾)
155, 14, 6hlatlej1 36515 . . 3 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ (𝑋𝑃) ∈ 𝐴) → (𝐹𝑃) ((𝐹𝑃) (𝑋𝑃)))
161, 10, 13, 15syl3anc 1367 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ((𝐹𝑃) (𝑋𝑃)))
171hllatd 36504 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
18 cdlemk.b . . . . . . 7 𝐵 = (Base‘𝐾)
1918, 6atbase 36429 . . . . . 6 ((𝐹𝑃) ∈ 𝐴 → (𝐹𝑃) ∈ 𝐵)
2010, 19syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ 𝐵)
2118, 6atbase 36429 . . . . . 6 ((𝑋𝑃) ∈ 𝐴 → (𝑋𝑃) ∈ 𝐵)
2213, 21syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) ∈ 𝐵)
2318, 14latjcl 17664 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝑃) ∈ 𝐵 ∧ (𝑋𝑃) ∈ 𝐵) → ((𝐹𝑃) (𝑋𝑃)) ∈ 𝐵)
2417, 20, 22, 23syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑋𝑃)) ∈ 𝐵)
25 simp1r 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
2618, 7lhpbase 37138 . . . . 5 (𝑊𝐻𝑊𝐵)
2725, 26syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐵)
285, 14, 6hlatlej2 36516 . . . . 5 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ (𝑋𝑃) ∈ 𝐴) → (𝑋𝑃) ((𝐹𝑃) (𝑋𝑃)))
291, 10, 13, 28syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) ((𝐹𝑃) (𝑋𝑃)))
30 cdlemk.m . . . . 5 = (meet‘𝐾)
3118, 5, 14, 30, 6atmod3i1 37004 . . . 4 ((𝐾 ∈ HL ∧ ((𝑋𝑃) ∈ 𝐴 ∧ ((𝐹𝑃) (𝑋𝑃)) ∈ 𝐵𝑊𝐵) ∧ (𝑋𝑃) ((𝐹𝑃) (𝑋𝑃))) → ((𝑋𝑃) (((𝐹𝑃) (𝑋𝑃)) 𝑊)) = (((𝐹𝑃) (𝑋𝑃)) ((𝑋𝑃) 𝑊)))
321, 13, 24, 27, 29, 31syl131anc 1379 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) (((𝐹𝑃) (𝑋𝑃)) 𝑊)) = (((𝐹𝑃) (𝑋𝑃)) ((𝑋𝑃) 𝑊)))
337, 8ltrncnv 37286 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
342, 3, 33syl2anc 586 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
357, 8ltrnco 37859 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇𝐹𝑇) → (𝑋𝐹) ∈ 𝑇)
362, 11, 34, 35syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝐹) ∈ 𝑇)
375, 6, 7, 8ltrnel 37279 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
383, 37syld3an2 1407 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
39 cdlemk.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
405, 14, 30, 6, 7, 8, 39trlval2 37303 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐹) ∈ 𝑇 ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → (𝑅‘(𝑋𝐹)) = (((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))) 𝑊))
412, 36, 38, 40syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑋𝐹)) = (((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))) 𝑊))
4218, 7, 8ltrn1o 37264 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
432, 3, 42syl2anc 586 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹:𝐵1-1-onto𝐵)
44 f1ococnv1 6646 . . . . . . . . . . . . . 14 (𝐹:𝐵1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
4543, 44syl 17 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝐹) = ( I ↾ 𝐵))
4645coeq2d 5736 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋 ∘ (𝐹𝐹)) = (𝑋 ∘ ( I ↾ 𝐵)))
4718, 7, 8ltrn1o 37264 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → 𝑋:𝐵1-1-onto𝐵)
482, 11, 47syl2anc 586 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑋:𝐵1-1-onto𝐵)
49 f1of 6618 . . . . . . . . . . . . 13 (𝑋:𝐵1-1-onto𝐵𝑋:𝐵𝐵)
50 fcoi1 6555 . . . . . . . . . . . . 13 (𝑋:𝐵𝐵 → (𝑋 ∘ ( I ↾ 𝐵)) = 𝑋)
5148, 49, 503syl 18 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋 ∘ ( I ↾ 𝐵)) = 𝑋)
5246, 51eqtr2d 2860 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑋 = (𝑋 ∘ (𝐹𝐹)))
53 coass 6121 . . . . . . . . . . 11 ((𝑋𝐹) ∘ 𝐹) = (𝑋 ∘ (𝐹𝐹))
5452, 53syl6eqr 2877 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑋 = ((𝑋𝐹) ∘ 𝐹))
5554fveq1d 6675 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) = (((𝑋𝐹) ∘ 𝐹)‘𝑃))
565, 6, 7, 8ltrncoval 37285 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐹) ∈ 𝑇𝐹𝑇) ∧ 𝑃𝐴) → (((𝑋𝐹) ∘ 𝐹)‘𝑃) = ((𝑋𝐹)‘(𝐹𝑃)))
572, 36, 3, 4, 56syl121anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑋𝐹) ∘ 𝐹)‘𝑃) = ((𝑋𝐹)‘(𝐹𝑃)))
5855, 57eqtrd 2859 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) = ((𝑋𝐹)‘(𝐹𝑃)))
5958oveq2d 7175 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑋𝑃)) = ((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))))
6059eqcomd 2830 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))) = ((𝐹𝑃) (𝑋𝑃)))
6160oveq1d 7174 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))) 𝑊) = (((𝐹𝑃) (𝑋𝑃)) 𝑊))
6241, 61eqtrd 2859 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑋𝐹)) = (((𝐹𝑃) (𝑋𝑃)) 𝑊))
6362oveq2d 7175 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) (𝑅‘(𝑋𝐹))) = ((𝑋𝑃) (((𝐹𝑃) (𝑋𝑃)) 𝑊)))
645, 6, 7, 8ltrnel 37279 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) ∈ 𝐴 ∧ ¬ (𝑋𝑃) 𝑊))
6511, 64syld3an2 1407 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) ∈ 𝐴 ∧ ¬ (𝑋𝑃) 𝑊))
66 eqid 2824 . . . . . . 7 (1.‘𝐾) = (1.‘𝐾)
675, 14, 66, 6, 7lhpjat2 37161 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝑃) ∈ 𝐴 ∧ ¬ (𝑋𝑃) 𝑊)) → ((𝑋𝑃) 𝑊) = (1.‘𝐾))
682, 65, 67syl2anc 586 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) 𝑊) = (1.‘𝐾))
6968oveq2d 7175 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) (𝑋𝑃)) ((𝑋𝑃) 𝑊)) = (((𝐹𝑃) (𝑋𝑃)) (1.‘𝐾)))
70 hlol 36501 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OL)
711, 70syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OL)
7218, 30, 66olm11 36367 . . . . 5 ((𝐾 ∈ OL ∧ ((𝐹𝑃) (𝑋𝑃)) ∈ 𝐵) → (((𝐹𝑃) (𝑋𝑃)) (1.‘𝐾)) = ((𝐹𝑃) (𝑋𝑃)))
7371, 24, 72syl2anc 586 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) (𝑋𝑃)) (1.‘𝐾)) = ((𝐹𝑃) (𝑋𝑃)))
7469, 73eqtr2d 2860 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑋𝑃)) = (((𝐹𝑃) (𝑋𝑃)) ((𝑋𝑃) 𝑊)))
7532, 63, 743eqtr4rd 2870 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑋𝑃)) = ((𝑋𝑃) (𝑅‘(𝑋𝐹))))
7616, 75breqtrd 5095 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ((𝑋𝑃) (𝑅‘(𝑋𝐹))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113   class class class wbr 5069   I cid 5462  ccnv 5557  cres 5560  ccom 5562  wf 6354  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7159  Basecbs 16486  lecple 16575  joincjn 17557  meetcmee 17558  1.cp1 17651  Latclat 17658  OLcol 36314  Atomscatm 36403  HLchlt 36490  LHypclh 37124  LTrncltrn 37241  trLctrl 37298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-riotaBAD 36093
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-1st 7692  df-2nd 7693  df-undef 7942  df-map 8411  df-proset 17541  df-poset 17559  df-plt 17571  df-lub 17587  df-glb 17588  df-join 17589  df-meet 17590  df-p0 17652  df-p1 17653  df-lat 17659  df-clat 17721  df-oposet 36316  df-ol 36318  df-oml 36319  df-covers 36406  df-ats 36407  df-atl 36438  df-cvlat 36462  df-hlat 36491  df-llines 36638  df-lplanes 36639  df-lvols 36640  df-lines 36641  df-psubsp 36643  df-pmap 36644  df-padd 36936  df-lhyp 37128  df-laut 37129  df-ldil 37244  df-ltrn 37245  df-trl 37299
This theorem is referenced by:  cdlemk5a  37975
  Copyright terms: Public domain W3C validator