Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn3 Structured version   Visualization version   GIF version

Theorem cdlemn3 40372
Description: Part of proof of Lemma N of [Crawley] p. 121 line 31. (Contributed by NM, 21-Feb-2014.)
Hypotheses
Ref Expression
cdlemn3.l ≀ = (leβ€˜πΎ)
cdlemn3.a 𝐴 = (Atomsβ€˜πΎ)
cdlemn3.p 𝑃 = ((ocβ€˜πΎ)β€˜π‘Š)
cdlemn3.h 𝐻 = (LHypβ€˜πΎ)
cdlemn3.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemn3.f 𝐹 = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑄)
cdlemn3.g 𝐺 = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑅)
cdlemn3.j 𝐽 = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘„) = 𝑅)
Assertion
Ref Expression
cdlemn3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (𝐽 ∘ 𝐹) = 𝐺)
Distinct variable groups:   ≀ ,β„Ž   𝐴,β„Ž   β„Ž,𝐻   β„Ž,𝐾   𝑃,β„Ž   𝑄,β„Ž   𝑅,β„Ž   𝑇,β„Ž   β„Ž,π‘Š
Allowed substitution hints:   𝐹(β„Ž)   𝐺(β„Ž)   𝐽(β„Ž)

Proof of Theorem cdlemn3
StepHypRef Expression
1 simp1 1135 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 cdlemn3.l . . . . . . . . . 10 ≀ = (leβ€˜πΎ)
3 cdlemn3.a . . . . . . . . . 10 𝐴 = (Atomsβ€˜πΎ)
4 cdlemn3.h . . . . . . . . . 10 𝐻 = (LHypβ€˜πΎ)
5 cdlemn3.p . . . . . . . . . 10 𝑃 = ((ocβ€˜πΎ)β€˜π‘Š)
62, 3, 4, 5lhpocnel2 39194 . . . . . . . . 9 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
763ad2ant1 1132 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
8 simp2 1136 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
9 cdlemn3.t . . . . . . . . 9 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
10 cdlemn3.f . . . . . . . . 9 𝐹 = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑄)
112, 3, 4, 9, 10ltrniotacl 39754 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝐹 ∈ 𝑇)
121, 7, 8, 11syl3anc 1370 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ 𝐹 ∈ 𝑇)
13 eqid 2731 . . . . . . . 8 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1413, 4, 9ltrn1o 39299 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ 𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
151, 12, 14syl2anc 583 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ 𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
16 f1of 6833 . . . . . 6 (𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) β†’ 𝐹:(Baseβ€˜πΎ)⟢(Baseβ€˜πΎ))
1715, 16syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ 𝐹:(Baseβ€˜πΎ)⟢(Baseβ€˜πΎ))
187simpld 494 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ 𝑃 ∈ 𝐴)
1913, 3atbase 38463 . . . . . 6 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
2018, 19syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
21 fvco3 6990 . . . . 5 ((𝐹:(Baseβ€˜πΎ)⟢(Baseβ€˜πΎ) ∧ 𝑃 ∈ (Baseβ€˜πΎ)) β†’ ((𝐽 ∘ 𝐹)β€˜π‘ƒ) = (π½β€˜(πΉβ€˜π‘ƒ)))
2217, 20, 21syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ ((𝐽 ∘ 𝐹)β€˜π‘ƒ) = (π½β€˜(πΉβ€˜π‘ƒ)))
232, 3, 4, 9, 10ltrniotaval 39756 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΉβ€˜π‘ƒ) = 𝑄)
241, 7, 8, 23syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (πΉβ€˜π‘ƒ) = 𝑄)
2524fveq2d 6895 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (π½β€˜(πΉβ€˜π‘ƒ)) = (π½β€˜π‘„))
26 cdlemn3.j . . . . 5 𝐽 = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘„) = 𝑅)
272, 3, 4, 9, 26ltrniotaval 39756 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (π½β€˜π‘„) = 𝑅)
2822, 25, 273eqtrd 2775 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ ((𝐽 ∘ 𝐹)β€˜π‘ƒ) = 𝑅)
29 cdlemn3.g . . . . 5 𝐺 = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑅)
302, 3, 4, 9, 29ltrniotaval 39756 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (πΊβ€˜π‘ƒ) = 𝑅)
317, 30syld3an2 1410 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (πΊβ€˜π‘ƒ) = 𝑅)
3228, 31eqtr4d 2774 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ ((𝐽 ∘ 𝐹)β€˜π‘ƒ) = (πΊβ€˜π‘ƒ))
332, 3, 4, 9, 26ltrniotacl 39754 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ 𝐽 ∈ 𝑇)
344, 9ltrnco 39894 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐽 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) β†’ (𝐽 ∘ 𝐹) ∈ 𝑇)
351, 33, 12, 34syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (𝐽 ∘ 𝐹) ∈ 𝑇)
362, 3, 4, 9, 29ltrniotacl 39754 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ 𝐺 ∈ 𝑇)
377, 36syld3an2 1410 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ 𝐺 ∈ 𝑇)
382, 3, 4, 9ltrneq3 39383 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐽 ∘ 𝐹) ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (((𝐽 ∘ 𝐹)β€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ↔ (𝐽 ∘ 𝐹) = 𝐺))
391, 35, 37, 7, 38syl121anc 1374 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (((𝐽 ∘ 𝐹)β€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ↔ (𝐽 ∘ 𝐹) = 𝐺))
4032, 39mpbid 231 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (𝐽 ∘ 𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   class class class wbr 5148   ∘ ccom 5680  βŸΆwf 6539  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  β„©crio 7367  Basecbs 17149  lecple 17209  occoc 17210  Atomscatm 38437  HLchlt 38524  LHypclh 39159  LTrncltrn 39276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-riotaBAD 38127
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7978  df-2nd 7979  df-undef 8261  df-map 8825  df-proset 18253  df-poset 18271  df-plt 18288  df-lub 18304  df-glb 18305  df-join 18306  df-meet 18307  df-p0 18383  df-p1 18384  df-lat 18390  df-clat 18457  df-oposet 38350  df-ol 38352  df-oml 38353  df-covers 38440  df-ats 38441  df-atl 38472  df-cvlat 38496  df-hlat 38525  df-llines 38673  df-lplanes 38674  df-lvols 38675  df-lines 38676  df-psubsp 38678  df-pmap 38679  df-padd 38971  df-lhyp 39163  df-laut 39164  df-ldil 39279  df-ltrn 39280  df-trl 39334
This theorem is referenced by:  cdlemn4  40373
  Copyright terms: Public domain W3C validator