Proof of Theorem cdlemn3
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1 1137 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 2 |  | cdlemn3.l | . . . . . . . . . 10
⊢  ≤ =
(le‘𝐾) | 
| 3 |  | cdlemn3.a | . . . . . . . . . 10
⊢ 𝐴 = (Atoms‘𝐾) | 
| 4 |  | cdlemn3.h | . . . . . . . . . 10
⊢ 𝐻 = (LHyp‘𝐾) | 
| 5 |  | cdlemn3.p | . . . . . . . . . 10
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | 
| 6 | 2, 3, 4, 5 | lhpocnel2 40021 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 7 | 6 | 3ad2ant1 1134 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 8 |  | simp2 1138 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | 
| 9 |  | cdlemn3.t | . . . . . . . . 9
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 10 |  | cdlemn3.f | . . . . . . . . 9
⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) | 
| 11 | 2, 3, 4, 9, 10 | ltrniotacl 40581 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝑇) | 
| 12 | 1, 7, 8, 11 | syl3anc 1373 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝐹 ∈ 𝑇) | 
| 13 |  | eqid 2737 | . . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 14 | 13, 4, 9 | ltrn1o 40126 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) | 
| 15 | 1, 12, 14 | syl2anc 584 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) | 
| 16 |  | f1of 6848 | . . . . . 6
⊢ (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹:(Base‘𝐾)⟶(Base‘𝐾)) | 
| 17 | 15, 16 | syl 17 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝐹:(Base‘𝐾)⟶(Base‘𝐾)) | 
| 18 | 7 | simpld 494 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝑃 ∈ 𝐴) | 
| 19 | 13, 3 | atbase 39290 | . . . . . 6
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) | 
| 20 | 18, 19 | syl 17 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝑃 ∈ (Base‘𝐾)) | 
| 21 |  | fvco3 7008 | . . . . 5
⊢ ((𝐹:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → ((𝐽 ∘ 𝐹)‘𝑃) = (𝐽‘(𝐹‘𝑃))) | 
| 22 | 17, 20, 21 | syl2anc 584 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ((𝐽 ∘ 𝐹)‘𝑃) = (𝐽‘(𝐹‘𝑃))) | 
| 23 | 2, 3, 4, 9, 10 | ltrniotaval 40583 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐹‘𝑃) = 𝑄) | 
| 24 | 1, 7, 8, 23 | syl3anc 1373 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐹‘𝑃) = 𝑄) | 
| 25 | 24 | fveq2d 6910 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐽‘(𝐹‘𝑃)) = (𝐽‘𝑄)) | 
| 26 |  | cdlemn3.j | . . . . 5
⊢ 𝐽 = (℩ℎ ∈ 𝑇 (ℎ‘𝑄) = 𝑅) | 
| 27 | 2, 3, 4, 9, 26 | ltrniotaval 40583 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐽‘𝑄) = 𝑅) | 
| 28 | 22, 25, 27 | 3eqtrd 2781 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ((𝐽 ∘ 𝐹)‘𝑃) = 𝑅) | 
| 29 |  | cdlemn3.g | . . . . 5
⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑅) | 
| 30 | 2, 3, 4, 9, 29 | ltrniotaval 40583 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐺‘𝑃) = 𝑅) | 
| 31 | 7, 30 | syld3an2 1413 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐺‘𝑃) = 𝑅) | 
| 32 | 28, 31 | eqtr4d 2780 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ((𝐽 ∘ 𝐹)‘𝑃) = (𝐺‘𝑃)) | 
| 33 | 2, 3, 4, 9, 26 | ltrniotacl 40581 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝐽 ∈ 𝑇) | 
| 34 | 4, 9 | ltrnco 40721 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐽 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → (𝐽 ∘ 𝐹) ∈ 𝑇) | 
| 35 | 1, 33, 12, 34 | syl3anc 1373 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐽 ∘ 𝐹) ∈ 𝑇) | 
| 36 | 2, 3, 4, 9, 29 | ltrniotacl 40581 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝐺 ∈ 𝑇) | 
| 37 | 7, 36 | syld3an2 1413 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝐺 ∈ 𝑇) | 
| 38 | 2, 3, 4, 9 | ltrneq3 40210 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐽 ∘ 𝐹) ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝐽 ∘ 𝐹)‘𝑃) = (𝐺‘𝑃) ↔ (𝐽 ∘ 𝐹) = 𝐺)) | 
| 39 | 1, 35, 37, 7, 38 | syl121anc 1377 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (((𝐽 ∘ 𝐹)‘𝑃) = (𝐺‘𝑃) ↔ (𝐽 ∘ 𝐹) = 𝐺)) | 
| 40 | 32, 39 | mpbid 232 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐽 ∘ 𝐹) = 𝐺) |