Proof of Theorem cdlemn3
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1136 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 2 | | cdlemn3.l |
. . . . . . . . . 10
⊢ ≤ =
(le‘𝐾) |
| 3 | | cdlemn3.a |
. . . . . . . . . 10
⊢ 𝐴 = (Atoms‘𝐾) |
| 4 | | cdlemn3.h |
. . . . . . . . . 10
⊢ 𝐻 = (LHyp‘𝐾) |
| 5 | | cdlemn3.p |
. . . . . . . . . 10
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| 6 | 2, 3, 4, 5 | lhpocnel2 40038 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 7 | 6 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 8 | | simp2 1137 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 9 | | cdlemn3.t |
. . . . . . . . 9
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 10 | | cdlemn3.f |
. . . . . . . . 9
⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) |
| 11 | 2, 3, 4, 9, 10 | ltrniotacl 40598 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
| 12 | 1, 7, 8, 11 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
| 13 | | eqid 2735 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 14 | 13, 4, 9 | ltrn1o 40143 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
| 15 | 1, 12, 14 | syl2anc 584 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
| 16 | | f1of 6818 |
. . . . . 6
⊢ (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹:(Base‘𝐾)⟶(Base‘𝐾)) |
| 17 | 15, 16 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝐹:(Base‘𝐾)⟶(Base‘𝐾)) |
| 18 | 7 | simpld 494 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝑃 ∈ 𝐴) |
| 19 | 13, 3 | atbase 39307 |
. . . . . 6
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 20 | 18, 19 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝑃 ∈ (Base‘𝐾)) |
| 21 | | fvco3 6978 |
. . . . 5
⊢ ((𝐹:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → ((𝐽 ∘ 𝐹)‘𝑃) = (𝐽‘(𝐹‘𝑃))) |
| 22 | 17, 20, 21 | syl2anc 584 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ((𝐽 ∘ 𝐹)‘𝑃) = (𝐽‘(𝐹‘𝑃))) |
| 23 | 2, 3, 4, 9, 10 | ltrniotaval 40600 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐹‘𝑃) = 𝑄) |
| 24 | 1, 7, 8, 23 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐹‘𝑃) = 𝑄) |
| 25 | 24 | fveq2d 6880 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐽‘(𝐹‘𝑃)) = (𝐽‘𝑄)) |
| 26 | | cdlemn3.j |
. . . . 5
⊢ 𝐽 = (℩ℎ ∈ 𝑇 (ℎ‘𝑄) = 𝑅) |
| 27 | 2, 3, 4, 9, 26 | ltrniotaval 40600 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐽‘𝑄) = 𝑅) |
| 28 | 22, 25, 27 | 3eqtrd 2774 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ((𝐽 ∘ 𝐹)‘𝑃) = 𝑅) |
| 29 | | cdlemn3.g |
. . . . 5
⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑅) |
| 30 | 2, 3, 4, 9, 29 | ltrniotaval 40600 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐺‘𝑃) = 𝑅) |
| 31 | 7, 30 | syld3an2 1413 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐺‘𝑃) = 𝑅) |
| 32 | 28, 31 | eqtr4d 2773 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ((𝐽 ∘ 𝐹)‘𝑃) = (𝐺‘𝑃)) |
| 33 | 2, 3, 4, 9, 26 | ltrniotacl 40598 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝐽 ∈ 𝑇) |
| 34 | 4, 9 | ltrnco 40738 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐽 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → (𝐽 ∘ 𝐹) ∈ 𝑇) |
| 35 | 1, 33, 12, 34 | syl3anc 1373 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐽 ∘ 𝐹) ∈ 𝑇) |
| 36 | 2, 3, 4, 9, 29 | ltrniotacl 40598 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝐺 ∈ 𝑇) |
| 37 | 7, 36 | syld3an2 1413 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝐺 ∈ 𝑇) |
| 38 | 2, 3, 4, 9 | ltrneq3 40227 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐽 ∘ 𝐹) ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝐽 ∘ 𝐹)‘𝑃) = (𝐺‘𝑃) ↔ (𝐽 ∘ 𝐹) = 𝐺)) |
| 39 | 1, 35, 37, 7, 38 | syl121anc 1377 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (((𝐽 ∘ 𝐹)‘𝑃) = (𝐺‘𝑃) ↔ (𝐽 ∘ 𝐹) = 𝐺)) |
| 40 | 32, 39 | mpbid 232 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐽 ∘ 𝐹) = 𝐺) |