Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn3 Structured version   Visualization version   GIF version

Theorem cdlemn3 38201
Description: Part of proof of Lemma N of [Crawley] p. 121 line 31. (Contributed by NM, 21-Feb-2014.)
Hypotheses
Ref Expression
cdlemn3.l = (le‘𝐾)
cdlemn3.a 𝐴 = (Atoms‘𝐾)
cdlemn3.p 𝑃 = ((oc‘𝐾)‘𝑊)
cdlemn3.h 𝐻 = (LHyp‘𝐾)
cdlemn3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemn3.f 𝐹 = (𝑇 (𝑃) = 𝑄)
cdlemn3.g 𝐺 = (𝑇 (𝑃) = 𝑅)
cdlemn3.j 𝐽 = (𝑇 (𝑄) = 𝑅)
Assertion
Ref Expression
cdlemn3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐽𝐹) = 𝐺)
Distinct variable groups:   ,   𝐴,   ,𝐻   ,𝐾   𝑃,   𝑄,   𝑅,   𝑇,   ,𝑊
Allowed substitution hints:   𝐹()   𝐺()   𝐽()

Proof of Theorem cdlemn3
StepHypRef Expression
1 simp1 1130 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 cdlemn3.l . . . . . . . . . 10 = (le‘𝐾)
3 cdlemn3.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
4 cdlemn3.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
5 cdlemn3.p . . . . . . . . . 10 𝑃 = ((oc‘𝐾)‘𝑊)
62, 3, 4, 5lhpocnel2 37023 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
763ad2ant1 1127 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simp2 1131 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
9 cdlemn3.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 cdlemn3.f . . . . . . . . 9 𝐹 = (𝑇 (𝑃) = 𝑄)
112, 3, 4, 9, 10ltrniotacl 37583 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
121, 7, 8, 11syl3anc 1365 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐹𝑇)
13 eqid 2824 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1413, 4, 9ltrn1o 37128 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
151, 12, 14syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
16 f1of 6611 . . . . . 6 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹:(Base‘𝐾)⟶(Base‘𝐾))
1715, 16syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐹:(Base‘𝐾)⟶(Base‘𝐾))
187simpld 495 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑃𝐴)
1913, 3atbase 36293 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2018, 19syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑃 ∈ (Base‘𝐾))
21 fvco3 6756 . . . . 5 ((𝐹:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → ((𝐽𝐹)‘𝑃) = (𝐽‘(𝐹𝑃)))
2217, 20, 21syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝐽𝐹)‘𝑃) = (𝐽‘(𝐹𝑃)))
232, 3, 4, 9, 10ltrniotaval 37585 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐹𝑃) = 𝑄)
241, 7, 8, 23syl3anc 1365 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐹𝑃) = 𝑄)
2524fveq2d 6670 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐽‘(𝐹𝑃)) = (𝐽𝑄))
26 cdlemn3.j . . . . 5 𝐽 = (𝑇 (𝑄) = 𝑅)
272, 3, 4, 9, 26ltrniotaval 37585 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐽𝑄) = 𝑅)
2822, 25, 273eqtrd 2864 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝐽𝐹)‘𝑃) = 𝑅)
29 cdlemn3.g . . . . 5 𝐺 = (𝑇 (𝑃) = 𝑅)
302, 3, 4, 9, 29ltrniotaval 37585 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐺𝑃) = 𝑅)
317, 30syld3an2 1405 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐺𝑃) = 𝑅)
3228, 31eqtr4d 2863 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝐽𝐹)‘𝑃) = (𝐺𝑃))
332, 3, 4, 9, 26ltrniotacl 37583 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐽𝑇)
344, 9ltrnco 37723 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐽𝑇𝐹𝑇) → (𝐽𝐹) ∈ 𝑇)
351, 33, 12, 34syl3anc 1365 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐽𝐹) ∈ 𝑇)
362, 3, 4, 9, 29ltrniotacl 37583 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐺𝑇)
377, 36syld3an2 1405 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐺𝑇)
382, 3, 4, 9ltrneq3 37212 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐽𝐹) ∈ 𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐽𝐹)‘𝑃) = (𝐺𝑃) ↔ (𝐽𝐹) = 𝐺))
391, 35, 37, 7, 38syl121anc 1369 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (((𝐽𝐹)‘𝑃) = (𝐺𝑃) ↔ (𝐽𝐹) = 𝐺))
4032, 39mpbid 233 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐽𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2106   class class class wbr 5062  ccom 5557  wf 6347  1-1-ontowf1o 6350  cfv 6351  crio 7108  Basecbs 16475  lecple 16564  occoc 16565  Atomscatm 36267  HLchlt 36354  LHypclh 36988  LTrncltrn 37105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-13 2385  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-riotaBAD 35957
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7683  df-2nd 7684  df-undef 7933  df-map 8401  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36180  df-ol 36182  df-oml 36183  df-covers 36270  df-ats 36271  df-atl 36302  df-cvlat 36326  df-hlat 36355  df-llines 36502  df-lplanes 36503  df-lvols 36504  df-lines 36505  df-psubsp 36507  df-pmap 36508  df-padd 36800  df-lhyp 36992  df-laut 36993  df-ldil 37108  df-ltrn 37109  df-trl 37163
This theorem is referenced by:  cdlemn4  38202
  Copyright terms: Public domain W3C validator