Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemi1 Structured version   Visualization version   GIF version

Theorem cdlemi1 40800
Description: Part of proof of Lemma I of [Crawley] p. 118. (Contributed by NM, 18-Jun-2013.)
Hypotheses
Ref Expression
cdlemi.b 𝐵 = (Base‘𝐾)
cdlemi.l = (le‘𝐾)
cdlemi.j = (join‘𝐾)
cdlemi.m = (meet‘𝐾)
cdlemi.a 𝐴 = (Atoms‘𝐾)
cdlemi.h 𝐻 = (LHyp‘𝐾)
cdlemi.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemi.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemi.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemi1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)))

Proof of Theorem cdlemi1
StepHypRef Expression
1 cdlemi.b . 2 𝐵 = (Base‘𝐾)
2 cdlemi.l . 2 = (le‘𝐾)
3 simp1l 1196 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
43hllatd 39345 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
5 simp1 1135 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simp2l 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑈𝐸)
7 simp2r 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
8 cdlemi.h . . . . 5 𝐻 = (LHyp‘𝐾)
9 cdlemi.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 cdlemi.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
118, 9, 10tendocl 40749 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐺𝑇) → (𝑈𝐺) ∈ 𝑇)
125, 6, 7, 11syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑈𝐺) ∈ 𝑇)
13 simp3l 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
14 cdlemi.a . . . . 5 𝐴 = (Atoms‘𝐾)
151, 14atbase 39270 . . . 4 (𝑃𝐴𝑃𝐵)
1613, 15syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐵)
171, 8, 9ltrncl 40107 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇𝑃𝐵) → ((𝑈𝐺)‘𝑃) ∈ 𝐵)
185, 12, 16, 17syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) ∈ 𝐵)
19 cdlemi.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
201, 8, 9, 19trlcl 40146 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇) → (𝑅‘(𝑈𝐺)) ∈ 𝐵)
215, 12, 20syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) ∈ 𝐵)
22 cdlemi.j . . . 4 = (join‘𝐾)
231, 22latjcl 18496 . . 3 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑅‘(𝑈𝐺)) ∈ 𝐵) → (𝑃 (𝑅‘(𝑈𝐺))) ∈ 𝐵)
244, 16, 21, 23syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅‘(𝑈𝐺))) ∈ 𝐵)
251, 8, 9, 19trlcl 40146 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ 𝐵)
265, 7, 25syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) ∈ 𝐵)
271, 22latjcl 18496 . . 3 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑅𝐺) ∈ 𝐵) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
284, 16, 26, 27syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
291, 2, 22latlej2 18506 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ ((𝑈𝐺)‘𝑃) ∈ 𝐵) → ((𝑈𝐺)‘𝑃) (𝑃 ((𝑈𝐺)‘𝑃)))
304, 16, 18, 29syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 ((𝑈𝐺)‘𝑃)))
31 cdlemi.m . . . . . . 7 = (meet‘𝐾)
322, 22, 31, 14, 8, 9, 19trlval2 40145 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) = ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊))
3312, 32syld3an2 1410 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) = ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊))
3433oveq2d 7446 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅‘(𝑈𝐺))) = (𝑃 ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊)))
351, 22latjcl 18496 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ ((𝑈𝐺)‘𝑃) ∈ 𝐵) → (𝑃 ((𝑈𝐺)‘𝑃)) ∈ 𝐵)
364, 16, 18, 35syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 ((𝑈𝐺)‘𝑃)) ∈ 𝐵)
37 simp1r 1197 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
381, 8lhpbase 39980 . . . . . 6 (𝑊𝐻𝑊𝐵)
3937, 38syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐵)
401, 2, 22latlej1 18505 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ ((𝑈𝐺)‘𝑃) ∈ 𝐵) → 𝑃 (𝑃 ((𝑈𝐺)‘𝑃)))
414, 16, 18, 40syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 (𝑃 ((𝑈𝐺)‘𝑃)))
421, 2, 22, 31, 14atmod3i1 39846 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 ((𝑈𝐺)‘𝑃)) ∈ 𝐵𝑊𝐵) ∧ 𝑃 (𝑃 ((𝑈𝐺)‘𝑃))) → (𝑃 ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊)) = ((𝑃 ((𝑈𝐺)‘𝑃)) (𝑃 𝑊)))
433, 13, 36, 39, 41, 42syl131anc 1382 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊)) = ((𝑃 ((𝑈𝐺)‘𝑃)) (𝑃 𝑊)))
44 eqid 2734 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
452, 22, 44, 14, 8lhpjat2 40003 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (1.‘𝐾))
46453adant2 1130 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (1.‘𝐾))
4746oveq2d 7446 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 ((𝑈𝐺)‘𝑃)) (𝑃 𝑊)) = ((𝑃 ((𝑈𝐺)‘𝑃)) (1.‘𝐾)))
48 hlol 39342 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
493, 48syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OL)
501, 31, 44olm11 39208 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑃 ((𝑈𝐺)‘𝑃)) ∈ 𝐵) → ((𝑃 ((𝑈𝐺)‘𝑃)) (1.‘𝐾)) = (𝑃 ((𝑈𝐺)‘𝑃)))
5149, 36, 50syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 ((𝑈𝐺)‘𝑃)) (1.‘𝐾)) = (𝑃 ((𝑈𝐺)‘𝑃)))
5247, 51eqtrd 2774 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 ((𝑈𝐺)‘𝑃)) (𝑃 𝑊)) = (𝑃 ((𝑈𝐺)‘𝑃)))
5334, 43, 523eqtrd 2778 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅‘(𝑈𝐺))) = (𝑃 ((𝑈𝐺)‘𝑃)))
5430, 53breqtrrd 5175 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅‘(𝑈𝐺))))
552, 8, 9, 19, 10tendotp 40743 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐺𝑇) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
565, 6, 7, 55syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
571, 2, 22latjlej2 18511 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑅‘(𝑈𝐺)) ∈ 𝐵 ∧ (𝑅𝐺) ∈ 𝐵𝑃𝐵)) → ((𝑅‘(𝑈𝐺)) (𝑅𝐺) → (𝑃 (𝑅‘(𝑈𝐺))) (𝑃 (𝑅𝐺))))
584, 21, 26, 16, 57syl13anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑅‘(𝑈𝐺)) (𝑅𝐺) → (𝑃 (𝑅‘(𝑈𝐺))) (𝑃 (𝑅𝐺))))
5956, 58mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅‘(𝑈𝐺))) (𝑃 (𝑅𝐺)))
601, 2, 4, 18, 24, 28, 54, 59lattrd 18503 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105   class class class wbr 5147  cfv 6562  (class class class)co 7430  Basecbs 17244  lecple 17304  joincjn 18368  meetcmee 18369  1.cp1 18481  Latclat 18488  OLcol 39155  Atomscatm 39244  HLchlt 39331  LHypclh 39966  LTrncltrn 40083  trLctrl 40140  TEndoctendo 40734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-map 8866  df-proset 18351  df-poset 18370  df-plt 18387  df-lub 18403  df-glb 18404  df-join 18405  df-meet 18406  df-p0 18482  df-p1 18483  df-lat 18489  df-clat 18556  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-psubsp 39485  df-pmap 39486  df-padd 39778  df-lhyp 39970  df-laut 39971  df-ldil 40086  df-ltrn 40087  df-trl 40141  df-tendo 40737
This theorem is referenced by:  cdlemi2  40801  cdlemi  40802
  Copyright terms: Public domain W3C validator