Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemi1 Structured version   Visualization version   GIF version

Theorem cdlemi1 40812
Description: Part of proof of Lemma I of [Crawley] p. 118. (Contributed by NM, 18-Jun-2013.)
Hypotheses
Ref Expression
cdlemi.b 𝐵 = (Base‘𝐾)
cdlemi.l = (le‘𝐾)
cdlemi.j = (join‘𝐾)
cdlemi.m = (meet‘𝐾)
cdlemi.a 𝐴 = (Atoms‘𝐾)
cdlemi.h 𝐻 = (LHyp‘𝐾)
cdlemi.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemi.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemi.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemi1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)))

Proof of Theorem cdlemi1
StepHypRef Expression
1 cdlemi.b . 2 𝐵 = (Base‘𝐾)
2 cdlemi.l . 2 = (le‘𝐾)
3 simp1l 1198 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
43hllatd 39357 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
5 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simp2l 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑈𝐸)
7 simp2r 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
8 cdlemi.h . . . . 5 𝐻 = (LHyp‘𝐾)
9 cdlemi.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 cdlemi.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
118, 9, 10tendocl 40761 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐺𝑇) → (𝑈𝐺) ∈ 𝑇)
125, 6, 7, 11syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑈𝐺) ∈ 𝑇)
13 simp3l 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
14 cdlemi.a . . . . 5 𝐴 = (Atoms‘𝐾)
151, 14atbase 39282 . . . 4 (𝑃𝐴𝑃𝐵)
1613, 15syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐵)
171, 8, 9ltrncl 40119 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇𝑃𝐵) → ((𝑈𝐺)‘𝑃) ∈ 𝐵)
185, 12, 16, 17syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) ∈ 𝐵)
19 cdlemi.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
201, 8, 9, 19trlcl 40158 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇) → (𝑅‘(𝑈𝐺)) ∈ 𝐵)
215, 12, 20syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) ∈ 𝐵)
22 cdlemi.j . . . 4 = (join‘𝐾)
231, 22latjcl 18398 . . 3 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑅‘(𝑈𝐺)) ∈ 𝐵) → (𝑃 (𝑅‘(𝑈𝐺))) ∈ 𝐵)
244, 16, 21, 23syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅‘(𝑈𝐺))) ∈ 𝐵)
251, 8, 9, 19trlcl 40158 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ 𝐵)
265, 7, 25syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) ∈ 𝐵)
271, 22latjcl 18398 . . 3 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑅𝐺) ∈ 𝐵) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
284, 16, 26, 27syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
291, 2, 22latlej2 18408 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ ((𝑈𝐺)‘𝑃) ∈ 𝐵) → ((𝑈𝐺)‘𝑃) (𝑃 ((𝑈𝐺)‘𝑃)))
304, 16, 18, 29syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 ((𝑈𝐺)‘𝑃)))
31 cdlemi.m . . . . . . 7 = (meet‘𝐾)
322, 22, 31, 14, 8, 9, 19trlval2 40157 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) = ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊))
3312, 32syld3an2 1413 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) = ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊))
3433oveq2d 7403 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅‘(𝑈𝐺))) = (𝑃 ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊)))
351, 22latjcl 18398 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ ((𝑈𝐺)‘𝑃) ∈ 𝐵) → (𝑃 ((𝑈𝐺)‘𝑃)) ∈ 𝐵)
364, 16, 18, 35syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 ((𝑈𝐺)‘𝑃)) ∈ 𝐵)
37 simp1r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
381, 8lhpbase 39992 . . . . . 6 (𝑊𝐻𝑊𝐵)
3937, 38syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐵)
401, 2, 22latlej1 18407 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ ((𝑈𝐺)‘𝑃) ∈ 𝐵) → 𝑃 (𝑃 ((𝑈𝐺)‘𝑃)))
414, 16, 18, 40syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 (𝑃 ((𝑈𝐺)‘𝑃)))
421, 2, 22, 31, 14atmod3i1 39858 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 ((𝑈𝐺)‘𝑃)) ∈ 𝐵𝑊𝐵) ∧ 𝑃 (𝑃 ((𝑈𝐺)‘𝑃))) → (𝑃 ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊)) = ((𝑃 ((𝑈𝐺)‘𝑃)) (𝑃 𝑊)))
433, 13, 36, 39, 41, 42syl131anc 1385 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊)) = ((𝑃 ((𝑈𝐺)‘𝑃)) (𝑃 𝑊)))
44 eqid 2729 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
452, 22, 44, 14, 8lhpjat2 40015 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (1.‘𝐾))
46453adant2 1131 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (1.‘𝐾))
4746oveq2d 7403 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 ((𝑈𝐺)‘𝑃)) (𝑃 𝑊)) = ((𝑃 ((𝑈𝐺)‘𝑃)) (1.‘𝐾)))
48 hlol 39354 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
493, 48syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OL)
501, 31, 44olm11 39220 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑃 ((𝑈𝐺)‘𝑃)) ∈ 𝐵) → ((𝑃 ((𝑈𝐺)‘𝑃)) (1.‘𝐾)) = (𝑃 ((𝑈𝐺)‘𝑃)))
5149, 36, 50syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 ((𝑈𝐺)‘𝑃)) (1.‘𝐾)) = (𝑃 ((𝑈𝐺)‘𝑃)))
5247, 51eqtrd 2764 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 ((𝑈𝐺)‘𝑃)) (𝑃 𝑊)) = (𝑃 ((𝑈𝐺)‘𝑃)))
5334, 43, 523eqtrd 2768 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅‘(𝑈𝐺))) = (𝑃 ((𝑈𝐺)‘𝑃)))
5430, 53breqtrrd 5135 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅‘(𝑈𝐺))))
552, 8, 9, 19, 10tendotp 40755 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐺𝑇) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
565, 6, 7, 55syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
571, 2, 22latjlej2 18413 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑅‘(𝑈𝐺)) ∈ 𝐵 ∧ (𝑅𝐺) ∈ 𝐵𝑃𝐵)) → ((𝑅‘(𝑈𝐺)) (𝑅𝐺) → (𝑃 (𝑅‘(𝑈𝐺))) (𝑃 (𝑅𝐺))))
584, 21, 26, 16, 57syl13anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑅‘(𝑈𝐺)) (𝑅𝐺) → (𝑃 (𝑅‘(𝑈𝐺))) (𝑃 (𝑅𝐺))))
5956, 58mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅‘(𝑈𝐺))) (𝑃 (𝑅𝐺)))
601, 2, 4, 18, 24, 28, 54, 59lattrd 18405 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  1.cp1 18383  Latclat 18390  OLcol 39167  Atomscatm 39256  HLchlt 39343  LHypclh 39978  LTrncltrn 40095  trLctrl 40152  TEndoctendo 40746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153  df-tendo 40749
This theorem is referenced by:  cdlemi2  40813  cdlemi  40814
  Copyright terms: Public domain W3C validator