Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemi1 Structured version   Visualization version   GIF version

Theorem cdlemi1 40783
Description: Part of proof of Lemma I of [Crawley] p. 118. (Contributed by NM, 18-Jun-2013.)
Hypotheses
Ref Expression
cdlemi.b 𝐵 = (Base‘𝐾)
cdlemi.l = (le‘𝐾)
cdlemi.j = (join‘𝐾)
cdlemi.m = (meet‘𝐾)
cdlemi.a 𝐴 = (Atoms‘𝐾)
cdlemi.h 𝐻 = (LHyp‘𝐾)
cdlemi.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemi.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemi.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemi1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)))

Proof of Theorem cdlemi1
StepHypRef Expression
1 cdlemi.b . 2 𝐵 = (Base‘𝐾)
2 cdlemi.l . 2 = (le‘𝐾)
3 simp1l 1198 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
43hllatd 39328 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
5 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simp2l 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑈𝐸)
7 simp2r 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
8 cdlemi.h . . . . 5 𝐻 = (LHyp‘𝐾)
9 cdlemi.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 cdlemi.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
118, 9, 10tendocl 40732 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐺𝑇) → (𝑈𝐺) ∈ 𝑇)
125, 6, 7, 11syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑈𝐺) ∈ 𝑇)
13 simp3l 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
14 cdlemi.a . . . . 5 𝐴 = (Atoms‘𝐾)
151, 14atbase 39253 . . . 4 (𝑃𝐴𝑃𝐵)
1613, 15syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐵)
171, 8, 9ltrncl 40090 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇𝑃𝐵) → ((𝑈𝐺)‘𝑃) ∈ 𝐵)
185, 12, 16, 17syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) ∈ 𝐵)
19 cdlemi.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
201, 8, 9, 19trlcl 40129 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇) → (𝑅‘(𝑈𝐺)) ∈ 𝐵)
215, 12, 20syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) ∈ 𝐵)
22 cdlemi.j . . . 4 = (join‘𝐾)
231, 22latjcl 18447 . . 3 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑅‘(𝑈𝐺)) ∈ 𝐵) → (𝑃 (𝑅‘(𝑈𝐺))) ∈ 𝐵)
244, 16, 21, 23syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅‘(𝑈𝐺))) ∈ 𝐵)
251, 8, 9, 19trlcl 40129 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ 𝐵)
265, 7, 25syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) ∈ 𝐵)
271, 22latjcl 18447 . . 3 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑅𝐺) ∈ 𝐵) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
284, 16, 26, 27syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
291, 2, 22latlej2 18457 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ ((𝑈𝐺)‘𝑃) ∈ 𝐵) → ((𝑈𝐺)‘𝑃) (𝑃 ((𝑈𝐺)‘𝑃)))
304, 16, 18, 29syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 ((𝑈𝐺)‘𝑃)))
31 cdlemi.m . . . . . . 7 = (meet‘𝐾)
322, 22, 31, 14, 8, 9, 19trlval2 40128 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) = ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊))
3312, 32syld3an2 1413 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) = ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊))
3433oveq2d 7419 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅‘(𝑈𝐺))) = (𝑃 ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊)))
351, 22latjcl 18447 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ ((𝑈𝐺)‘𝑃) ∈ 𝐵) → (𝑃 ((𝑈𝐺)‘𝑃)) ∈ 𝐵)
364, 16, 18, 35syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 ((𝑈𝐺)‘𝑃)) ∈ 𝐵)
37 simp1r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
381, 8lhpbase 39963 . . . . . 6 (𝑊𝐻𝑊𝐵)
3937, 38syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐵)
401, 2, 22latlej1 18456 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ ((𝑈𝐺)‘𝑃) ∈ 𝐵) → 𝑃 (𝑃 ((𝑈𝐺)‘𝑃)))
414, 16, 18, 40syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 (𝑃 ((𝑈𝐺)‘𝑃)))
421, 2, 22, 31, 14atmod3i1 39829 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 ((𝑈𝐺)‘𝑃)) ∈ 𝐵𝑊𝐵) ∧ 𝑃 (𝑃 ((𝑈𝐺)‘𝑃))) → (𝑃 ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊)) = ((𝑃 ((𝑈𝐺)‘𝑃)) (𝑃 𝑊)))
433, 13, 36, 39, 41, 42syl131anc 1385 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊)) = ((𝑃 ((𝑈𝐺)‘𝑃)) (𝑃 𝑊)))
44 eqid 2735 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
452, 22, 44, 14, 8lhpjat2 39986 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (1.‘𝐾))
46453adant2 1131 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (1.‘𝐾))
4746oveq2d 7419 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 ((𝑈𝐺)‘𝑃)) (𝑃 𝑊)) = ((𝑃 ((𝑈𝐺)‘𝑃)) (1.‘𝐾)))
48 hlol 39325 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
493, 48syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OL)
501, 31, 44olm11 39191 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑃 ((𝑈𝐺)‘𝑃)) ∈ 𝐵) → ((𝑃 ((𝑈𝐺)‘𝑃)) (1.‘𝐾)) = (𝑃 ((𝑈𝐺)‘𝑃)))
5149, 36, 50syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 ((𝑈𝐺)‘𝑃)) (1.‘𝐾)) = (𝑃 ((𝑈𝐺)‘𝑃)))
5247, 51eqtrd 2770 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 ((𝑈𝐺)‘𝑃)) (𝑃 𝑊)) = (𝑃 ((𝑈𝐺)‘𝑃)))
5334, 43, 523eqtrd 2774 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅‘(𝑈𝐺))) = (𝑃 ((𝑈𝐺)‘𝑃)))
5430, 53breqtrrd 5147 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅‘(𝑈𝐺))))
552, 8, 9, 19, 10tendotp 40726 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐺𝑇) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
565, 6, 7, 55syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
571, 2, 22latjlej2 18462 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑅‘(𝑈𝐺)) ∈ 𝐵 ∧ (𝑅𝐺) ∈ 𝐵𝑃𝐵)) → ((𝑅‘(𝑈𝐺)) (𝑅𝐺) → (𝑃 (𝑅‘(𝑈𝐺))) (𝑃 (𝑅𝐺))))
584, 21, 26, 16, 57syl13anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑅‘(𝑈𝐺)) (𝑅𝐺) → (𝑃 (𝑅‘(𝑈𝐺))) (𝑃 (𝑅𝐺))))
5956, 58mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅‘(𝑈𝐺))) (𝑃 (𝑅𝐺)))
601, 2, 4, 18, 24, 28, 54, 59lattrd 18454 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6530  (class class class)co 7403  Basecbs 17226  lecple 17276  joincjn 18321  meetcmee 18322  1.cp1 18432  Latclat 18439  OLcol 39138  Atomscatm 39227  HLchlt 39314  LHypclh 39949  LTrncltrn 40066  trLctrl 40123  TEndoctendo 40717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-map 8840  df-proset 18304  df-poset 18323  df-plt 18338  df-lub 18354  df-glb 18355  df-join 18356  df-meet 18357  df-p0 18433  df-p1 18434  df-lat 18440  df-clat 18507  df-oposet 39140  df-ol 39142  df-oml 39143  df-covers 39230  df-ats 39231  df-atl 39262  df-cvlat 39286  df-hlat 39315  df-psubsp 39468  df-pmap 39469  df-padd 39761  df-lhyp 39953  df-laut 39954  df-ldil 40069  df-ltrn 40070  df-trl 40124  df-tendo 40720
This theorem is referenced by:  cdlemi2  40784  cdlemi  40785
  Copyright terms: Public domain W3C validator