Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemi1 Structured version   Visualization version   GIF version

Theorem cdlemi1 39281
Description: Part of proof of Lemma I of [Crawley] p. 118. (Contributed by NM, 18-Jun-2013.)
Hypotheses
Ref Expression
cdlemi.b 𝐵 = (Base‘𝐾)
cdlemi.l = (le‘𝐾)
cdlemi.j = (join‘𝐾)
cdlemi.m = (meet‘𝐾)
cdlemi.a 𝐴 = (Atoms‘𝐾)
cdlemi.h 𝐻 = (LHyp‘𝐾)
cdlemi.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemi.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemi.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemi1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)))

Proof of Theorem cdlemi1
StepHypRef Expression
1 cdlemi.b . 2 𝐵 = (Base‘𝐾)
2 cdlemi.l . 2 = (le‘𝐾)
3 simp1l 1197 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
43hllatd 37826 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
5 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simp2l 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑈𝐸)
7 simp2r 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
8 cdlemi.h . . . . 5 𝐻 = (LHyp‘𝐾)
9 cdlemi.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 cdlemi.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
118, 9, 10tendocl 39230 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐺𝑇) → (𝑈𝐺) ∈ 𝑇)
125, 6, 7, 11syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑈𝐺) ∈ 𝑇)
13 simp3l 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
14 cdlemi.a . . . . 5 𝐴 = (Atoms‘𝐾)
151, 14atbase 37751 . . . 4 (𝑃𝐴𝑃𝐵)
1613, 15syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐵)
171, 8, 9ltrncl 38588 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇𝑃𝐵) → ((𝑈𝐺)‘𝑃) ∈ 𝐵)
185, 12, 16, 17syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) ∈ 𝐵)
19 cdlemi.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
201, 8, 9, 19trlcl 38627 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇) → (𝑅‘(𝑈𝐺)) ∈ 𝐵)
215, 12, 20syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) ∈ 𝐵)
22 cdlemi.j . . . 4 = (join‘𝐾)
231, 22latjcl 18328 . . 3 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑅‘(𝑈𝐺)) ∈ 𝐵) → (𝑃 (𝑅‘(𝑈𝐺))) ∈ 𝐵)
244, 16, 21, 23syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅‘(𝑈𝐺))) ∈ 𝐵)
251, 8, 9, 19trlcl 38627 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ 𝐵)
265, 7, 25syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) ∈ 𝐵)
271, 22latjcl 18328 . . 3 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑅𝐺) ∈ 𝐵) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
284, 16, 26, 27syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
291, 2, 22latlej2 18338 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ ((𝑈𝐺)‘𝑃) ∈ 𝐵) → ((𝑈𝐺)‘𝑃) (𝑃 ((𝑈𝐺)‘𝑃)))
304, 16, 18, 29syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 ((𝑈𝐺)‘𝑃)))
31 cdlemi.m . . . . . . 7 = (meet‘𝐾)
322, 22, 31, 14, 8, 9, 19trlval2 38626 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) = ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊))
3312, 32syld3an2 1411 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) = ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊))
3433oveq2d 7373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅‘(𝑈𝐺))) = (𝑃 ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊)))
351, 22latjcl 18328 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ ((𝑈𝐺)‘𝑃) ∈ 𝐵) → (𝑃 ((𝑈𝐺)‘𝑃)) ∈ 𝐵)
364, 16, 18, 35syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 ((𝑈𝐺)‘𝑃)) ∈ 𝐵)
37 simp1r 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
381, 8lhpbase 38461 . . . . . 6 (𝑊𝐻𝑊𝐵)
3937, 38syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐵)
401, 2, 22latlej1 18337 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ ((𝑈𝐺)‘𝑃) ∈ 𝐵) → 𝑃 (𝑃 ((𝑈𝐺)‘𝑃)))
414, 16, 18, 40syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 (𝑃 ((𝑈𝐺)‘𝑃)))
421, 2, 22, 31, 14atmod3i1 38327 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 ((𝑈𝐺)‘𝑃)) ∈ 𝐵𝑊𝐵) ∧ 𝑃 (𝑃 ((𝑈𝐺)‘𝑃))) → (𝑃 ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊)) = ((𝑃 ((𝑈𝐺)‘𝑃)) (𝑃 𝑊)))
433, 13, 36, 39, 41, 42syl131anc 1383 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊)) = ((𝑃 ((𝑈𝐺)‘𝑃)) (𝑃 𝑊)))
44 eqid 2736 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
452, 22, 44, 14, 8lhpjat2 38484 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (1.‘𝐾))
46453adant2 1131 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (1.‘𝐾))
4746oveq2d 7373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 ((𝑈𝐺)‘𝑃)) (𝑃 𝑊)) = ((𝑃 ((𝑈𝐺)‘𝑃)) (1.‘𝐾)))
48 hlol 37823 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
493, 48syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OL)
501, 31, 44olm11 37689 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑃 ((𝑈𝐺)‘𝑃)) ∈ 𝐵) → ((𝑃 ((𝑈𝐺)‘𝑃)) (1.‘𝐾)) = (𝑃 ((𝑈𝐺)‘𝑃)))
5149, 36, 50syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 ((𝑈𝐺)‘𝑃)) (1.‘𝐾)) = (𝑃 ((𝑈𝐺)‘𝑃)))
5247, 51eqtrd 2776 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 ((𝑈𝐺)‘𝑃)) (𝑃 𝑊)) = (𝑃 ((𝑈𝐺)‘𝑃)))
5334, 43, 523eqtrd 2780 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅‘(𝑈𝐺))) = (𝑃 ((𝑈𝐺)‘𝑃)))
5430, 53breqtrrd 5133 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅‘(𝑈𝐺))))
552, 8, 9, 19, 10tendotp 39224 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐺𝑇) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
565, 6, 7, 55syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
571, 2, 22latjlej2 18343 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑅‘(𝑈𝐺)) ∈ 𝐵 ∧ (𝑅𝐺) ∈ 𝐵𝑃𝐵)) → ((𝑅‘(𝑈𝐺)) (𝑅𝐺) → (𝑃 (𝑅‘(𝑈𝐺))) (𝑃 (𝑅𝐺))))
584, 21, 26, 16, 57syl13anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑅‘(𝑈𝐺)) (𝑅𝐺) → (𝑃 (𝑅‘(𝑈𝐺))) (𝑃 (𝑅𝐺))))
5956, 58mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅‘(𝑈𝐺))) (𝑃 (𝑅𝐺)))
601, 2, 4, 18, 24, 28, 54, 59lattrd 18335 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140  joincjn 18200  meetcmee 18201  1.cp1 18313  Latclat 18320  OLcol 37636  Atomscatm 37725  HLchlt 37812  LHypclh 38447  LTrncltrn 38564  trLctrl 38621  TEndoctendo 39215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-map 8767  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622  df-tendo 39218
This theorem is referenced by:  cdlemi2  39282  cdlemi  39283
  Copyright terms: Public domain W3C validator