Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipodrsfi | Structured version Visualization version GIF version |
Description: Finite upper bound property for directed collections of sets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
ipodrsfi | ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1135 | . . . 4 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → 𝑋 ⊆ 𝐴) | |
2 | ipodrscl 18171 | . . . . . 6 ⊢ ((toInc‘𝐴) ∈ Dirset → 𝐴 ∈ V) | |
3 | eqid 2738 | . . . . . . 7 ⊢ (toInc‘𝐴) = (toInc‘𝐴) | |
4 | 3 | ipobas 18164 | . . . . . 6 ⊢ (𝐴 ∈ V → 𝐴 = (Base‘(toInc‘𝐴))) |
5 | 2, 4 | syl 17 | . . . . 5 ⊢ ((toInc‘𝐴) ∈ Dirset → 𝐴 = (Base‘(toInc‘𝐴))) |
6 | 5 | 3ad2ant1 1131 | . . . 4 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → 𝐴 = (Base‘(toInc‘𝐴))) |
7 | 1, 6 | sseqtrd 3957 | . . 3 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → 𝑋 ⊆ (Base‘(toInc‘𝐴))) |
8 | eqid 2738 | . . . 4 ⊢ (Base‘(toInc‘𝐴)) = (Base‘(toInc‘𝐴)) | |
9 | eqid 2738 | . . . 4 ⊢ (le‘(toInc‘𝐴)) = (le‘(toInc‘𝐴)) | |
10 | 8, 9 | drsdirfi 17938 | . . 3 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ (Base‘(toInc‘𝐴)) ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧) |
11 | 7, 10 | syld3an2 1409 | . 2 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧) |
12 | 6 | rexeqdv 3340 | . . 3 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → (∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧)) |
13 | 2 | 3ad2ant1 1131 | . . . . . . . . 9 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → 𝐴 ∈ V) |
14 | 13 | adantr 480 | . . . . . . . 8 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝑋)) → 𝐴 ∈ V) |
15 | 1 | sselda 3917 | . . . . . . . . 9 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ 𝑤 ∈ 𝑋) → 𝑤 ∈ 𝐴) |
16 | 15 | adantrl 712 | . . . . . . . 8 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝑋)) → 𝑤 ∈ 𝐴) |
17 | simprl 767 | . . . . . . . 8 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝑋)) → 𝑧 ∈ 𝐴) | |
18 | 3, 9 | ipole 18167 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑤(le‘(toInc‘𝐴))𝑧 ↔ 𝑤 ⊆ 𝑧)) |
19 | 14, 16, 17, 18 | syl3anc 1369 | . . . . . . 7 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝑋)) → (𝑤(le‘(toInc‘𝐴))𝑧 ↔ 𝑤 ⊆ 𝑧)) |
20 | 19 | anassrs 467 | . . . . . 6 ⊢ (((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝑋) → (𝑤(le‘(toInc‘𝐴))𝑧 ↔ 𝑤 ⊆ 𝑧)) |
21 | 20 | ralbidva 3119 | . . . . 5 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ 𝑧 ∈ 𝐴) → (∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∀𝑤 ∈ 𝑋 𝑤 ⊆ 𝑧)) |
22 | unissb 4870 | . . . . 5 ⊢ (∪ 𝑋 ⊆ 𝑧 ↔ ∀𝑤 ∈ 𝑋 𝑤 ⊆ 𝑧) | |
23 | 21, 22 | bitr4di 288 | . . . 4 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ 𝑧 ∈ 𝐴) → (∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∪ 𝑋 ⊆ 𝑧)) |
24 | 23 | rexbidva 3224 | . . 3 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → (∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧)) |
25 | 12, 24 | bitr3d 280 | . 2 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → (∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧)) |
26 | 11, 25 | mpbid 231 | 1 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 ∪ cuni 4836 class class class wbr 5070 ‘cfv 6418 Fincfn 8691 Basecbs 16840 lecple 16895 Dirsetcdrs 17927 toInccipo 18160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-tset 16907 df-ple 16908 df-ocomp 16909 df-proset 17928 df-drs 17929 df-poset 17946 df-ipo 18161 |
This theorem is referenced by: isacs3lem 18175 isnacs3 40448 |
Copyright terms: Public domain | W3C validator |