| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipodrsfi | Structured version Visualization version GIF version | ||
| Description: Finite upper bound property for directed collections of sets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| Ref | Expression |
|---|---|
| ipodrsfi | ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . . 4 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → 𝑋 ⊆ 𝐴) | |
| 2 | ipodrscl 18473 | . . . . . 6 ⊢ ((toInc‘𝐴) ∈ Dirset → 𝐴 ∈ V) | |
| 3 | eqid 2729 | . . . . . . 7 ⊢ (toInc‘𝐴) = (toInc‘𝐴) | |
| 4 | 3 | ipobas 18466 | . . . . . 6 ⊢ (𝐴 ∈ V → 𝐴 = (Base‘(toInc‘𝐴))) |
| 5 | 2, 4 | syl 17 | . . . . 5 ⊢ ((toInc‘𝐴) ∈ Dirset → 𝐴 = (Base‘(toInc‘𝐴))) |
| 6 | 5 | 3ad2ant1 1133 | . . . 4 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → 𝐴 = (Base‘(toInc‘𝐴))) |
| 7 | 1, 6 | sseqtrd 3980 | . . 3 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → 𝑋 ⊆ (Base‘(toInc‘𝐴))) |
| 8 | eqid 2729 | . . . 4 ⊢ (Base‘(toInc‘𝐴)) = (Base‘(toInc‘𝐴)) | |
| 9 | eqid 2729 | . . . 4 ⊢ (le‘(toInc‘𝐴)) = (le‘(toInc‘𝐴)) | |
| 10 | 8, 9 | drsdirfi 18242 | . . 3 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ (Base‘(toInc‘𝐴)) ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧) |
| 11 | 7, 10 | syld3an2 1413 | . 2 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧) |
| 12 | 6 | rexeqdv 3297 | . . 3 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → (∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧)) |
| 13 | 2 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → 𝐴 ∈ V) |
| 14 | 13 | adantr 480 | . . . . . . . 8 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝑋)) → 𝐴 ∈ V) |
| 15 | 1 | sselda 3943 | . . . . . . . . 9 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ 𝑤 ∈ 𝑋) → 𝑤 ∈ 𝐴) |
| 16 | 15 | adantrl 716 | . . . . . . . 8 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝑋)) → 𝑤 ∈ 𝐴) |
| 17 | simprl 770 | . . . . . . . 8 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝑋)) → 𝑧 ∈ 𝐴) | |
| 18 | 3, 9 | ipole 18469 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑤(le‘(toInc‘𝐴))𝑧 ↔ 𝑤 ⊆ 𝑧)) |
| 19 | 14, 16, 17, 18 | syl3anc 1373 | . . . . . . 7 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝑋)) → (𝑤(le‘(toInc‘𝐴))𝑧 ↔ 𝑤 ⊆ 𝑧)) |
| 20 | 19 | anassrs 467 | . . . . . 6 ⊢ (((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝑋) → (𝑤(le‘(toInc‘𝐴))𝑧 ↔ 𝑤 ⊆ 𝑧)) |
| 21 | 20 | ralbidva 3154 | . . . . 5 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ 𝑧 ∈ 𝐴) → (∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∀𝑤 ∈ 𝑋 𝑤 ⊆ 𝑧)) |
| 22 | unissb 4899 | . . . . 5 ⊢ (∪ 𝑋 ⊆ 𝑧 ↔ ∀𝑤 ∈ 𝑋 𝑤 ⊆ 𝑧) | |
| 23 | 21, 22 | bitr4di 289 | . . . 4 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ 𝑧 ∈ 𝐴) → (∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∪ 𝑋 ⊆ 𝑧)) |
| 24 | 23 | rexbidva 3155 | . . 3 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → (∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧)) |
| 25 | 12, 24 | bitr3d 281 | . 2 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → (∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧)) |
| 26 | 11, 25 | mpbid 232 | 1 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3444 ⊆ wss 3911 ∪ cuni 4867 class class class wbr 5102 ‘cfv 6499 Fincfn 8895 Basecbs 17155 lecple 17203 Dirsetcdrs 18230 toInccipo 18462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-tset 17215 df-ple 17216 df-ocomp 17217 df-proset 18231 df-drs 18232 df-poset 18250 df-ipo 18463 |
| This theorem is referenced by: isacs3lem 18477 isnacs3 42671 |
| Copyright terms: Public domain | W3C validator |