MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipodrsfi Structured version   Visualization version   GIF version

Theorem ipodrsfi 18584
Description: Finite upper bound property for directed collections of sets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
ipodrsfi (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → ∃𝑧𝐴 𝑋𝑧)
Distinct variable groups:   𝑧,𝐴   𝑧,𝑋

Proof of Theorem ipodrsfi
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simp2 1138 . . . 4 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → 𝑋𝐴)
2 ipodrscl 18583 . . . . . 6 ((toInc‘𝐴) ∈ Dirset → 𝐴 ∈ V)
3 eqid 2737 . . . . . . 7 (toInc‘𝐴) = (toInc‘𝐴)
43ipobas 18576 . . . . . 6 (𝐴 ∈ V → 𝐴 = (Base‘(toInc‘𝐴)))
52, 4syl 17 . . . . 5 ((toInc‘𝐴) ∈ Dirset → 𝐴 = (Base‘(toInc‘𝐴)))
653ad2ant1 1134 . . . 4 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → 𝐴 = (Base‘(toInc‘𝐴)))
71, 6sseqtrd 4020 . . 3 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → 𝑋 ⊆ (Base‘(toInc‘𝐴)))
8 eqid 2737 . . . 4 (Base‘(toInc‘𝐴)) = (Base‘(toInc‘𝐴))
9 eqid 2737 . . . 4 (le‘(toInc‘𝐴)) = (le‘(toInc‘𝐴))
108, 9drsdirfi 18351 . . 3 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ (Base‘(toInc‘𝐴)) ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧)
117, 10syld3an2 1413 . 2 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧)
126rexeqdv 3327 . . 3 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → (∃𝑧𝐴𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧))
1323ad2ant1 1134 . . . . . . . . 9 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → 𝐴 ∈ V)
1413adantr 480 . . . . . . . 8 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ (𝑧𝐴𝑤𝑋)) → 𝐴 ∈ V)
151sselda 3983 . . . . . . . . 9 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ 𝑤𝑋) → 𝑤𝐴)
1615adantrl 716 . . . . . . . 8 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ (𝑧𝐴𝑤𝑋)) → 𝑤𝐴)
17 simprl 771 . . . . . . . 8 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ (𝑧𝐴𝑤𝑋)) → 𝑧𝐴)
183, 9ipole 18579 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑤𝐴𝑧𝐴) → (𝑤(le‘(toInc‘𝐴))𝑧𝑤𝑧))
1914, 16, 17, 18syl3anc 1373 . . . . . . 7 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ (𝑧𝐴𝑤𝑋)) → (𝑤(le‘(toInc‘𝐴))𝑧𝑤𝑧))
2019anassrs 467 . . . . . 6 (((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ 𝑧𝐴) ∧ 𝑤𝑋) → (𝑤(le‘(toInc‘𝐴))𝑧𝑤𝑧))
2120ralbidva 3176 . . . . 5 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ 𝑧𝐴) → (∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∀𝑤𝑋 𝑤𝑧))
22 unissb 4939 . . . . 5 ( 𝑋𝑧 ↔ ∀𝑤𝑋 𝑤𝑧)
2321, 22bitr4di 289 . . . 4 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ 𝑧𝐴) → (∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 𝑋𝑧))
2423rexbidva 3177 . . 3 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → (∃𝑧𝐴𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧𝐴 𝑋𝑧))
2512, 24bitr3d 281 . 2 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → (∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧𝐴 𝑋𝑧))
2611, 25mpbid 232 1 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → ∃𝑧𝐴 𝑋𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  wss 3951   cuni 4907   class class class wbr 5143  cfv 6561  Fincfn 8985  Basecbs 17247  lecple 17304  Dirsetcdrs 18339  toInccipo 18572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-tset 17316  df-ple 17317  df-ocomp 17318  df-proset 18340  df-drs 18341  df-poset 18359  df-ipo 18573
This theorem is referenced by:  isacs3lem  18587  isnacs3  42721
  Copyright terms: Public domain W3C validator