MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipodrsfi Structured version   Visualization version   GIF version

Theorem ipodrsfi 17773
Description: Finite upper bound property for directed collections of sets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
ipodrsfi (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → ∃𝑧𝐴 𝑋𝑧)
Distinct variable groups:   𝑧,𝐴   𝑧,𝑋

Proof of Theorem ipodrsfi
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simp2 1133 . . . 4 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → 𝑋𝐴)
2 ipodrscl 17772 . . . . . 6 ((toInc‘𝐴) ∈ Dirset → 𝐴 ∈ V)
3 eqid 2821 . . . . . . 7 (toInc‘𝐴) = (toInc‘𝐴)
43ipobas 17765 . . . . . 6 (𝐴 ∈ V → 𝐴 = (Base‘(toInc‘𝐴)))
52, 4syl 17 . . . . 5 ((toInc‘𝐴) ∈ Dirset → 𝐴 = (Base‘(toInc‘𝐴)))
653ad2ant1 1129 . . . 4 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → 𝐴 = (Base‘(toInc‘𝐴)))
71, 6sseqtrd 4007 . . 3 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → 𝑋 ⊆ (Base‘(toInc‘𝐴)))
8 eqid 2821 . . . 4 (Base‘(toInc‘𝐴)) = (Base‘(toInc‘𝐴))
9 eqid 2821 . . . 4 (le‘(toInc‘𝐴)) = (le‘(toInc‘𝐴))
108, 9drsdirfi 17548 . . 3 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ (Base‘(toInc‘𝐴)) ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧)
117, 10syld3an2 1407 . 2 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧)
126rexeqdv 3416 . . 3 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → (∃𝑧𝐴𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧))
1323ad2ant1 1129 . . . . . . . . 9 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → 𝐴 ∈ V)
1413adantr 483 . . . . . . . 8 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ (𝑧𝐴𝑤𝑋)) → 𝐴 ∈ V)
151sselda 3967 . . . . . . . . 9 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ 𝑤𝑋) → 𝑤𝐴)
1615adantrl 714 . . . . . . . 8 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ (𝑧𝐴𝑤𝑋)) → 𝑤𝐴)
17 simprl 769 . . . . . . . 8 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ (𝑧𝐴𝑤𝑋)) → 𝑧𝐴)
183, 9ipole 17768 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑤𝐴𝑧𝐴) → (𝑤(le‘(toInc‘𝐴))𝑧𝑤𝑧))
1914, 16, 17, 18syl3anc 1367 . . . . . . 7 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ (𝑧𝐴𝑤𝑋)) → (𝑤(le‘(toInc‘𝐴))𝑧𝑤𝑧))
2019anassrs 470 . . . . . 6 (((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ 𝑧𝐴) ∧ 𝑤𝑋) → (𝑤(le‘(toInc‘𝐴))𝑧𝑤𝑧))
2120ralbidva 3196 . . . . 5 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ 𝑧𝐴) → (∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∀𝑤𝑋 𝑤𝑧))
22 unissb 4870 . . . . 5 ( 𝑋𝑧 ↔ ∀𝑤𝑋 𝑤𝑧)
2321, 22syl6bbr 291 . . . 4 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ 𝑧𝐴) → (∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 𝑋𝑧))
2423rexbidva 3296 . . 3 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → (∃𝑧𝐴𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧𝐴 𝑋𝑧))
2512, 24bitr3d 283 . 2 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → (∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧𝐴 𝑋𝑧))
2611, 25mpbid 234 1 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → ∃𝑧𝐴 𝑋𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139  Vcvv 3494  wss 3936   cuni 4838   class class class wbr 5066  cfv 6355  Fincfn 8509  Basecbs 16483  lecple 16572  Dirsetcdrs 17537  toInccipo 17761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-tset 16584  df-ple 16585  df-ocomp 16586  df-proset 17538  df-drs 17539  df-poset 17556  df-ipo 17762
This theorem is referenced by:  isacs3lem  17776  isnacs3  39327
  Copyright terms: Public domain W3C validator