![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipodrsfi | Structured version Visualization version GIF version |
Description: Finite upper bound property for directed collections of sets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
ipodrsfi | ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1128 | . . . 4 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → 𝑋 ⊆ 𝐴) | |
2 | ipodrscl 17559 | . . . . . 6 ⊢ ((toInc‘𝐴) ∈ Dirset → 𝐴 ∈ V) | |
3 | eqid 2778 | . . . . . . 7 ⊢ (toInc‘𝐴) = (toInc‘𝐴) | |
4 | 3 | ipobas 17552 | . . . . . 6 ⊢ (𝐴 ∈ V → 𝐴 = (Base‘(toInc‘𝐴))) |
5 | 2, 4 | syl 17 | . . . . 5 ⊢ ((toInc‘𝐴) ∈ Dirset → 𝐴 = (Base‘(toInc‘𝐴))) |
6 | 5 | 3ad2ant1 1124 | . . . 4 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → 𝐴 = (Base‘(toInc‘𝐴))) |
7 | 1, 6 | sseqtrd 3860 | . . 3 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → 𝑋 ⊆ (Base‘(toInc‘𝐴))) |
8 | eqid 2778 | . . . 4 ⊢ (Base‘(toInc‘𝐴)) = (Base‘(toInc‘𝐴)) | |
9 | eqid 2778 | . . . 4 ⊢ (le‘(toInc‘𝐴)) = (le‘(toInc‘𝐴)) | |
10 | 8, 9 | drsdirfi 17335 | . . 3 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ (Base‘(toInc‘𝐴)) ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧) |
11 | 7, 10 | syld3an2 1480 | . 2 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧) |
12 | 6 | rexeqdv 3341 | . . 3 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → (∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧)) |
13 | 2 | 3ad2ant1 1124 | . . . . . . . . 9 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → 𝐴 ∈ V) |
14 | 13 | adantr 474 | . . . . . . . 8 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝑋)) → 𝐴 ∈ V) |
15 | 1 | sselda 3821 | . . . . . . . . 9 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ 𝑤 ∈ 𝑋) → 𝑤 ∈ 𝐴) |
16 | 15 | adantrl 706 | . . . . . . . 8 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝑋)) → 𝑤 ∈ 𝐴) |
17 | simprl 761 | . . . . . . . 8 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝑋)) → 𝑧 ∈ 𝐴) | |
18 | 3, 9 | ipole 17555 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑤(le‘(toInc‘𝐴))𝑧 ↔ 𝑤 ⊆ 𝑧)) |
19 | 14, 16, 17, 18 | syl3anc 1439 | . . . . . . 7 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝑋)) → (𝑤(le‘(toInc‘𝐴))𝑧 ↔ 𝑤 ⊆ 𝑧)) |
20 | 19 | anassrs 461 | . . . . . 6 ⊢ (((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝑋) → (𝑤(le‘(toInc‘𝐴))𝑧 ↔ 𝑤 ⊆ 𝑧)) |
21 | 20 | ralbidva 3167 | . . . . 5 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ 𝑧 ∈ 𝐴) → (∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∀𝑤 ∈ 𝑋 𝑤 ⊆ 𝑧)) |
22 | unissb 4706 | . . . . 5 ⊢ (∪ 𝑋 ⊆ 𝑧 ↔ ∀𝑤 ∈ 𝑋 𝑤 ⊆ 𝑧) | |
23 | 21, 22 | syl6bbr 281 | . . . 4 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ 𝑧 ∈ 𝐴) → (∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∪ 𝑋 ⊆ 𝑧)) |
24 | 23 | rexbidva 3234 | . . 3 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → (∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧)) |
25 | 12, 24 | bitr3d 273 | . 2 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → (∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧)) |
26 | 11, 25 | mpbid 224 | 1 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ∃wrex 3091 Vcvv 3398 ⊆ wss 3792 ∪ cuni 4673 class class class wbr 4888 ‘cfv 6137 Fincfn 8243 Basecbs 16266 lecple 16356 Dirsetcdrs 17324 toInccipo 17548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-2 11443 df-3 11444 df-4 11445 df-5 11446 df-6 11447 df-7 11448 df-8 11449 df-9 11450 df-n0 11648 df-z 11734 df-dec 11851 df-uz 11998 df-fz 12649 df-struct 16268 df-ndx 16269 df-slot 16270 df-base 16272 df-tset 16368 df-ple 16369 df-ocomp 16370 df-proset 17325 df-drs 17326 df-poset 17343 df-ipo 17549 |
This theorem is referenced by: isacs3lem 17563 isnacs3 38247 |
Copyright terms: Public domain | W3C validator |