| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipodrsfi | Structured version Visualization version GIF version | ||
| Description: Finite upper bound property for directed collections of sets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| Ref | Expression |
|---|---|
| ipodrsfi | ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1138 | . . . 4 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → 𝑋 ⊆ 𝐴) | |
| 2 | ipodrscl 18583 | . . . . . 6 ⊢ ((toInc‘𝐴) ∈ Dirset → 𝐴 ∈ V) | |
| 3 | eqid 2737 | . . . . . . 7 ⊢ (toInc‘𝐴) = (toInc‘𝐴) | |
| 4 | 3 | ipobas 18576 | . . . . . 6 ⊢ (𝐴 ∈ V → 𝐴 = (Base‘(toInc‘𝐴))) |
| 5 | 2, 4 | syl 17 | . . . . 5 ⊢ ((toInc‘𝐴) ∈ Dirset → 𝐴 = (Base‘(toInc‘𝐴))) |
| 6 | 5 | 3ad2ant1 1134 | . . . 4 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → 𝐴 = (Base‘(toInc‘𝐴))) |
| 7 | 1, 6 | sseqtrd 4020 | . . 3 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → 𝑋 ⊆ (Base‘(toInc‘𝐴))) |
| 8 | eqid 2737 | . . . 4 ⊢ (Base‘(toInc‘𝐴)) = (Base‘(toInc‘𝐴)) | |
| 9 | eqid 2737 | . . . 4 ⊢ (le‘(toInc‘𝐴)) = (le‘(toInc‘𝐴)) | |
| 10 | 8, 9 | drsdirfi 18351 | . . 3 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ (Base‘(toInc‘𝐴)) ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧) |
| 11 | 7, 10 | syld3an2 1413 | . 2 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧) |
| 12 | 6 | rexeqdv 3327 | . . 3 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → (∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧)) |
| 13 | 2 | 3ad2ant1 1134 | . . . . . . . . 9 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → 𝐴 ∈ V) |
| 14 | 13 | adantr 480 | . . . . . . . 8 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝑋)) → 𝐴 ∈ V) |
| 15 | 1 | sselda 3983 | . . . . . . . . 9 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ 𝑤 ∈ 𝑋) → 𝑤 ∈ 𝐴) |
| 16 | 15 | adantrl 716 | . . . . . . . 8 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝑋)) → 𝑤 ∈ 𝐴) |
| 17 | simprl 771 | . . . . . . . 8 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝑋)) → 𝑧 ∈ 𝐴) | |
| 18 | 3, 9 | ipole 18579 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑤(le‘(toInc‘𝐴))𝑧 ↔ 𝑤 ⊆ 𝑧)) |
| 19 | 14, 16, 17, 18 | syl3anc 1373 | . . . . . . 7 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝑋)) → (𝑤(le‘(toInc‘𝐴))𝑧 ↔ 𝑤 ⊆ 𝑧)) |
| 20 | 19 | anassrs 467 | . . . . . 6 ⊢ (((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝑋) → (𝑤(le‘(toInc‘𝐴))𝑧 ↔ 𝑤 ⊆ 𝑧)) |
| 21 | 20 | ralbidva 3176 | . . . . 5 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ 𝑧 ∈ 𝐴) → (∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∀𝑤 ∈ 𝑋 𝑤 ⊆ 𝑧)) |
| 22 | unissb 4939 | . . . . 5 ⊢ (∪ 𝑋 ⊆ 𝑧 ↔ ∀𝑤 ∈ 𝑋 𝑤 ⊆ 𝑧) | |
| 23 | 21, 22 | bitr4di 289 | . . . 4 ⊢ ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) ∧ 𝑧 ∈ 𝐴) → (∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∪ 𝑋 ⊆ 𝑧)) |
| 24 | 23 | rexbidva 3177 | . . 3 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → (∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧)) |
| 25 | 12, 24 | bitr3d 281 | . 2 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → (∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤 ∈ 𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧)) |
| 26 | 11, 25 | mpbid 232 | 1 ⊢ (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ 𝐴 ∪ 𝑋 ⊆ 𝑧) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 Vcvv 3480 ⊆ wss 3951 ∪ cuni 4907 class class class wbr 5143 ‘cfv 6561 Fincfn 8985 Basecbs 17247 lecple 17304 Dirsetcdrs 18339 toInccipo 18572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-tset 17316 df-ple 17317 df-ocomp 17318 df-proset 18340 df-drs 18341 df-poset 18359 df-ipo 18573 |
| This theorem is referenced by: isacs3lem 18587 isnacs3 42721 |
| Copyright terms: Public domain | W3C validator |