Step | Hyp | Ref
| Expression |
1 | | matplusgcell.a |
. . . . . . . . 9
⊢ 𝐴 = (𝑁 Mat 𝑅) |
2 | | matplusgcell.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐴) |
3 | 1, 2 | matrcl 21469 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | 3 | simpld 494 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐵 → 𝑁 ∈ Fin) |
5 | | simpl 482 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Ring) |
6 | 1 | matgrp 21487 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp) |
7 | 4, 5, 6 | syl2an2 682 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝐴 ∈ Grp) |
8 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝐴) = (0g‘𝐴) |
9 | 2, 8 | grpidcl 18522 |
. . . . . 6
⊢ (𝐴 ∈ Grp →
(0g‘𝐴)
∈ 𝐵) |
10 | 7, 9 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (0g‘𝐴) ∈ 𝐵) |
11 | | simpr 484 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
12 | 10, 11 | jca 511 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((0g‘𝐴) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
13 | 12 | 3adant3 1130 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((0g‘𝐴) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
14 | | eqid 2738 |
. . . 4
⊢
(-g‘𝐴) = (-g‘𝐴) |
15 | | eqid 2738 |
. . . 4
⊢
(-g‘𝑅) = (-g‘𝑅) |
16 | 1, 2, 14, 15 | matsubgcell 21491 |
. . 3
⊢ ((𝑅 ∈ Ring ∧
((0g‘𝐴)
∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼((0g‘𝐴)(-g‘𝐴)𝑋)𝐽) = ((𝐼(0g‘𝐴)𝐽)(-g‘𝑅)(𝐼𝑋𝐽))) |
17 | 13, 16 | syld3an2 1409 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼((0g‘𝐴)(-g‘𝐴)𝑋)𝐽) = ((𝐼(0g‘𝐴)𝐽)(-g‘𝑅)(𝐼𝑋𝐽))) |
18 | | matinvgcell.w |
. . . . . 6
⊢ 𝑊 = (invg‘𝐴) |
19 | 2, 14, 18, 8 | grpinvval2 18573 |
. . . . 5
⊢ ((𝐴 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑊‘𝑋) = ((0g‘𝐴)(-g‘𝐴)𝑋)) |
20 | 7, 11, 19 | syl2anc 583 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑊‘𝑋) = ((0g‘𝐴)(-g‘𝐴)𝑋)) |
21 | 20 | 3adant3 1130 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑊‘𝑋) = ((0g‘𝐴)(-g‘𝐴)𝑋)) |
22 | 21 | oveqd 7272 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑊‘𝑋)𝐽) = (𝐼((0g‘𝐴)(-g‘𝐴)𝑋)𝐽)) |
23 | | ringgrp 19703 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
24 | 23 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑅 ∈ Grp) |
25 | | simp3 1136 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) |
26 | 2 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (Base‘𝐴)) |
27 | 26 | biimpi 215 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝐴)) |
28 | 27 | 3ad2ant2 1132 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑋 ∈ (Base‘𝐴)) |
29 | | df-3an 1087 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑋 ∈ (Base‘𝐴)) ↔ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) ∧ 𝑋 ∈ (Base‘𝐴))) |
30 | 25, 28, 29 | sylanbrc 582 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑋 ∈ (Base‘𝐴))) |
31 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
32 | 1, 31 | matecl 21482 |
. . . . 5
⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑋 ∈ (Base‘𝐴)) → (𝐼𝑋𝐽) ∈ (Base‘𝑅)) |
33 | 30, 32 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝑋𝐽) ∈ (Base‘𝑅)) |
34 | | matinvgcell.v |
. . . . 5
⊢ 𝑉 = (invg‘𝑅) |
35 | | eqid 2738 |
. . . . 5
⊢
(0g‘𝑅) = (0g‘𝑅) |
36 | 31, 15, 34, 35 | grpinvval2 18573 |
. . . 4
⊢ ((𝑅 ∈ Grp ∧ (𝐼𝑋𝐽) ∈ (Base‘𝑅)) → (𝑉‘(𝐼𝑋𝐽)) = ((0g‘𝑅)(-g‘𝑅)(𝐼𝑋𝐽))) |
37 | 24, 33, 36 | syl2anc 583 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑉‘(𝐼𝑋𝐽)) = ((0g‘𝑅)(-g‘𝑅)(𝐼𝑋𝐽))) |
38 | 4 | anim1i 614 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
39 | 38 | ancoms 458 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
40 | 1, 35 | mat0op 21476 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(0g‘𝐴) =
(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (0g‘𝑅))) |
41 | 39, 40 | syl 17 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (0g‘𝐴) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (0g‘𝑅))) |
42 | 41 | 3adant3 1130 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (0g‘𝐴) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (0g‘𝑅))) |
43 | | eqidd 2739 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)) → (0g‘𝑅) = (0g‘𝑅)) |
44 | 25 | simpld 494 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐼 ∈ 𝑁) |
45 | | simp3r 1200 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐽 ∈ 𝑁) |
46 | | fvexd 6771 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (0g‘𝑅) ∈ V) |
47 | 42, 43, 44, 45, 46 | ovmpod 7403 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(0g‘𝐴)𝐽) = (0g‘𝑅)) |
48 | 47 | eqcomd 2744 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (0g‘𝑅) = (𝐼(0g‘𝐴)𝐽)) |
49 | 48 | oveq1d 7270 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((0g‘𝑅)(-g‘𝑅)(𝐼𝑋𝐽)) = ((𝐼(0g‘𝐴)𝐽)(-g‘𝑅)(𝐼𝑋𝐽))) |
50 | 37, 49 | eqtrd 2778 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑉‘(𝐼𝑋𝐽)) = ((𝐼(0g‘𝐴)𝐽)(-g‘𝑅)(𝐼𝑋𝐽))) |
51 | 17, 22, 50 | 3eqtr4d 2788 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑊‘𝑋)𝐽) = (𝑉‘(𝐼𝑋𝐽))) |