MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matinvgcell Structured version   Visualization version   GIF version

Theorem matinvgcell 21928
Description: Additive inversion in the matrix ring is cell-wise. (Contributed by AV, 17-Nov-2019.)
Hypotheses
Ref Expression
matplusgcell.a 𝐴 = (𝑁 Mat 𝑅)
matplusgcell.b 𝐵 = (Base‘𝐴)
matinvgcell.v 𝑉 = (invg𝑅)
matinvgcell.w 𝑊 = (invg𝐴)
Assertion
Ref Expression
matinvgcell ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑊𝑋)𝐽) = (𝑉‘(𝐼𝑋𝐽)))

Proof of Theorem matinvgcell
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 matplusgcell.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
2 matplusgcell.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
31, 2matrcl 21903 . . . . . . . 8 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 495 . . . . . . 7 (𝑋𝐵𝑁 ∈ Fin)
5 simpl 483 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Ring)
61matgrp 21923 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp)
74, 5, 6syl2an2 684 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝐴 ∈ Grp)
8 eqid 2732 . . . . . . 7 (0g𝐴) = (0g𝐴)
92, 8grpidcl 18846 . . . . . 6 (𝐴 ∈ Grp → (0g𝐴) ∈ 𝐵)
107, 9syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (0g𝐴) ∈ 𝐵)
11 simpr 485 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋𝐵)
1210, 11jca 512 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((0g𝐴) ∈ 𝐵𝑋𝐵))
13123adant3 1132 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → ((0g𝐴) ∈ 𝐵𝑋𝐵))
14 eqid 2732 . . . 4 (-g𝐴) = (-g𝐴)
15 eqid 2732 . . . 4 (-g𝑅) = (-g𝑅)
161, 2, 14, 15matsubgcell 21927 . . 3 ((𝑅 ∈ Ring ∧ ((0g𝐴) ∈ 𝐵𝑋𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((0g𝐴)(-g𝐴)𝑋)𝐽) = ((𝐼(0g𝐴)𝐽)(-g𝑅)(𝐼𝑋𝐽)))
1713, 16syld3an2 1411 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((0g𝐴)(-g𝐴)𝑋)𝐽) = ((𝐼(0g𝐴)𝐽)(-g𝑅)(𝐼𝑋𝐽)))
18 matinvgcell.w . . . . . 6 𝑊 = (invg𝐴)
192, 14, 18, 8grpinvval2 18902 . . . . 5 ((𝐴 ∈ Grp ∧ 𝑋𝐵) → (𝑊𝑋) = ((0g𝐴)(-g𝐴)𝑋))
207, 11, 19syl2anc 584 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑊𝑋) = ((0g𝐴)(-g𝐴)𝑋))
21203adant3 1132 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝑊𝑋) = ((0g𝐴)(-g𝐴)𝑋))
2221oveqd 7422 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑊𝑋)𝐽) = (𝐼((0g𝐴)(-g𝐴)𝑋)𝐽))
23 ringgrp 20054 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
24233ad2ant1 1133 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → 𝑅 ∈ Grp)
25 simp3 1138 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝑁𝐽𝑁))
262eleq2i 2825 . . . . . . . 8 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
2726biimpi 215 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
28273ad2ant2 1134 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → 𝑋 ∈ (Base‘𝐴))
29 df-3an 1089 . . . . . 6 ((𝐼𝑁𝐽𝑁𝑋 ∈ (Base‘𝐴)) ↔ ((𝐼𝑁𝐽𝑁) ∧ 𝑋 ∈ (Base‘𝐴)))
3025, 28, 29sylanbrc 583 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝑁𝐽𝑁𝑋 ∈ (Base‘𝐴)))
31 eqid 2732 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
321, 31matecl 21918 . . . . 5 ((𝐼𝑁𝐽𝑁𝑋 ∈ (Base‘𝐴)) → (𝐼𝑋𝐽) ∈ (Base‘𝑅))
3330, 32syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝑋𝐽) ∈ (Base‘𝑅))
34 matinvgcell.v . . . . 5 𝑉 = (invg𝑅)
35 eqid 2732 . . . . 5 (0g𝑅) = (0g𝑅)
3631, 15, 34, 35grpinvval2 18902 . . . 4 ((𝑅 ∈ Grp ∧ (𝐼𝑋𝐽) ∈ (Base‘𝑅)) → (𝑉‘(𝐼𝑋𝐽)) = ((0g𝑅)(-g𝑅)(𝐼𝑋𝐽)))
3724, 33, 36syl2anc 584 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝑉‘(𝐼𝑋𝐽)) = ((0g𝑅)(-g𝑅)(𝐼𝑋𝐽)))
384anim1i 615 . . . . . . . . 9 ((𝑋𝐵𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3938ancoms 459 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
401, 35mat0op 21912 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ (0g𝑅)))
4139, 40syl 17 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (0g𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ (0g𝑅)))
42413adant3 1132 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (0g𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ (0g𝑅)))
43 eqidd 2733 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) ∧ (𝑥 = 𝐼𝑦 = 𝐽)) → (0g𝑅) = (0g𝑅))
4425simpld 495 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → 𝐼𝑁)
45 simp3r 1202 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → 𝐽𝑁)
46 fvexd 6903 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (0g𝑅) ∈ V)
4742, 43, 44, 45, 46ovmpod 7556 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(0g𝐴)𝐽) = (0g𝑅))
4847eqcomd 2738 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (0g𝑅) = (𝐼(0g𝐴)𝐽))
4948oveq1d 7420 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → ((0g𝑅)(-g𝑅)(𝐼𝑋𝐽)) = ((𝐼(0g𝐴)𝐽)(-g𝑅)(𝐼𝑋𝐽)))
5037, 49eqtrd 2772 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝑉‘(𝐼𝑋𝐽)) = ((𝐼(0g𝐴)𝐽)(-g𝑅)(𝐼𝑋𝐽)))
5117, 22, 503eqtr4d 2782 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑊𝑋)𝐽) = (𝑉‘(𝐼𝑋𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3474  cfv 6540  (class class class)co 7405  cmpo 7407  Fincfn 8935  Basecbs 17140  0gc0g 17381  Grpcgrp 18815  invgcminusg 18816  -gcsg 18817  Ringcrg 20049   Mat cmat 21898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-0g 17383  df-prds 17389  df-pws 17391  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-mgp 19982  df-ur 19999  df-ring 20051  df-subrg 20353  df-lmod 20465  df-lss 20535  df-sra 20777  df-rgmod 20778  df-dsmm 21278  df-frlm 21293  df-mat 21899
This theorem is referenced by:  cpmatinvcl  22210
  Copyright terms: Public domain W3C validator