MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matinvgcell Structured version   Visualization version   GIF version

Theorem matinvgcell 21492
Description: Additive inversion in the matrix ring is cell-wise. (Contributed by AV, 17-Nov-2019.)
Hypotheses
Ref Expression
matplusgcell.a 𝐴 = (𝑁 Mat 𝑅)
matplusgcell.b 𝐵 = (Base‘𝐴)
matinvgcell.v 𝑉 = (invg𝑅)
matinvgcell.w 𝑊 = (invg𝐴)
Assertion
Ref Expression
matinvgcell ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑊𝑋)𝐽) = (𝑉‘(𝐼𝑋𝐽)))

Proof of Theorem matinvgcell
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 matplusgcell.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
2 matplusgcell.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
31, 2matrcl 21469 . . . . . . . 8 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 494 . . . . . . 7 (𝑋𝐵𝑁 ∈ Fin)
5 simpl 482 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Ring)
61matgrp 21487 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp)
74, 5, 6syl2an2 682 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝐴 ∈ Grp)
8 eqid 2738 . . . . . . 7 (0g𝐴) = (0g𝐴)
92, 8grpidcl 18522 . . . . . 6 (𝐴 ∈ Grp → (0g𝐴) ∈ 𝐵)
107, 9syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (0g𝐴) ∈ 𝐵)
11 simpr 484 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋𝐵)
1210, 11jca 511 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((0g𝐴) ∈ 𝐵𝑋𝐵))
13123adant3 1130 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → ((0g𝐴) ∈ 𝐵𝑋𝐵))
14 eqid 2738 . . . 4 (-g𝐴) = (-g𝐴)
15 eqid 2738 . . . 4 (-g𝑅) = (-g𝑅)
161, 2, 14, 15matsubgcell 21491 . . 3 ((𝑅 ∈ Ring ∧ ((0g𝐴) ∈ 𝐵𝑋𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((0g𝐴)(-g𝐴)𝑋)𝐽) = ((𝐼(0g𝐴)𝐽)(-g𝑅)(𝐼𝑋𝐽)))
1713, 16syld3an2 1409 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((0g𝐴)(-g𝐴)𝑋)𝐽) = ((𝐼(0g𝐴)𝐽)(-g𝑅)(𝐼𝑋𝐽)))
18 matinvgcell.w . . . . . 6 𝑊 = (invg𝐴)
192, 14, 18, 8grpinvval2 18573 . . . . 5 ((𝐴 ∈ Grp ∧ 𝑋𝐵) → (𝑊𝑋) = ((0g𝐴)(-g𝐴)𝑋))
207, 11, 19syl2anc 583 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑊𝑋) = ((0g𝐴)(-g𝐴)𝑋))
21203adant3 1130 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝑊𝑋) = ((0g𝐴)(-g𝐴)𝑋))
2221oveqd 7272 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑊𝑋)𝐽) = (𝐼((0g𝐴)(-g𝐴)𝑋)𝐽))
23 ringgrp 19703 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
24233ad2ant1 1131 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → 𝑅 ∈ Grp)
25 simp3 1136 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝑁𝐽𝑁))
262eleq2i 2830 . . . . . . . 8 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
2726biimpi 215 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
28273ad2ant2 1132 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → 𝑋 ∈ (Base‘𝐴))
29 df-3an 1087 . . . . . 6 ((𝐼𝑁𝐽𝑁𝑋 ∈ (Base‘𝐴)) ↔ ((𝐼𝑁𝐽𝑁) ∧ 𝑋 ∈ (Base‘𝐴)))
3025, 28, 29sylanbrc 582 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝑁𝐽𝑁𝑋 ∈ (Base‘𝐴)))
31 eqid 2738 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
321, 31matecl 21482 . . . . 5 ((𝐼𝑁𝐽𝑁𝑋 ∈ (Base‘𝐴)) → (𝐼𝑋𝐽) ∈ (Base‘𝑅))
3330, 32syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝑋𝐽) ∈ (Base‘𝑅))
34 matinvgcell.v . . . . 5 𝑉 = (invg𝑅)
35 eqid 2738 . . . . 5 (0g𝑅) = (0g𝑅)
3631, 15, 34, 35grpinvval2 18573 . . . 4 ((𝑅 ∈ Grp ∧ (𝐼𝑋𝐽) ∈ (Base‘𝑅)) → (𝑉‘(𝐼𝑋𝐽)) = ((0g𝑅)(-g𝑅)(𝐼𝑋𝐽)))
3724, 33, 36syl2anc 583 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝑉‘(𝐼𝑋𝐽)) = ((0g𝑅)(-g𝑅)(𝐼𝑋𝐽)))
384anim1i 614 . . . . . . . . 9 ((𝑋𝐵𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3938ancoms 458 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
401, 35mat0op 21476 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ (0g𝑅)))
4139, 40syl 17 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (0g𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ (0g𝑅)))
42413adant3 1130 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (0g𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ (0g𝑅)))
43 eqidd 2739 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) ∧ (𝑥 = 𝐼𝑦 = 𝐽)) → (0g𝑅) = (0g𝑅))
4425simpld 494 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → 𝐼𝑁)
45 simp3r 1200 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → 𝐽𝑁)
46 fvexd 6771 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (0g𝑅) ∈ V)
4742, 43, 44, 45, 46ovmpod 7403 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(0g𝐴)𝐽) = (0g𝑅))
4847eqcomd 2744 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (0g𝑅) = (𝐼(0g𝐴)𝐽))
4948oveq1d 7270 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → ((0g𝑅)(-g𝑅)(𝐼𝑋𝐽)) = ((𝐼(0g𝐴)𝐽)(-g𝑅)(𝐼𝑋𝐽)))
5037, 49eqtrd 2778 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝑉‘(𝐼𝑋𝐽)) = ((𝐼(0g𝐴)𝐽)(-g𝑅)(𝐼𝑋𝐽)))
5117, 22, 503eqtr4d 2788 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑊𝑋)𝐽) = (𝑉‘(𝐼𝑋𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cfv 6418  (class class class)co 7255  cmpo 7257  Fincfn 8691  Basecbs 16840  0gc0g 17067  Grpcgrp 18492  invgcminusg 18493  -gcsg 18494  Ringcrg 19698   Mat cmat 21464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-dsmm 20849  df-frlm 20864  df-mat 21465
This theorem is referenced by:  cpmatinvcl  21774
  Copyright terms: Public domain W3C validator