MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matinvgcell Structured version   Visualization version   GIF version

Theorem matinvgcell 22378
Description: Additive inversion in the matrix ring is cell-wise. (Contributed by AV, 17-Nov-2019.)
Hypotheses
Ref Expression
matplusgcell.a 𝐴 = (𝑁 Mat 𝑅)
matplusgcell.b 𝐵 = (Base‘𝐴)
matinvgcell.v 𝑉 = (invg𝑅)
matinvgcell.w 𝑊 = (invg𝐴)
Assertion
Ref Expression
matinvgcell ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑊𝑋)𝐽) = (𝑉‘(𝐼𝑋𝐽)))

Proof of Theorem matinvgcell
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 matplusgcell.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
2 matplusgcell.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
31, 2matrcl 22355 . . . . . . . 8 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 494 . . . . . . 7 (𝑋𝐵𝑁 ∈ Fin)
5 simpl 482 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Ring)
61matgrp 22373 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp)
74, 5, 6syl2an2 686 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝐴 ∈ Grp)
8 eqid 2736 . . . . . . 7 (0g𝐴) = (0g𝐴)
92, 8grpidcl 18953 . . . . . 6 (𝐴 ∈ Grp → (0g𝐴) ∈ 𝐵)
107, 9syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (0g𝐴) ∈ 𝐵)
11 simpr 484 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋𝐵)
1210, 11jca 511 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((0g𝐴) ∈ 𝐵𝑋𝐵))
13123adant3 1132 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → ((0g𝐴) ∈ 𝐵𝑋𝐵))
14 eqid 2736 . . . 4 (-g𝐴) = (-g𝐴)
15 eqid 2736 . . . 4 (-g𝑅) = (-g𝑅)
161, 2, 14, 15matsubgcell 22377 . . 3 ((𝑅 ∈ Ring ∧ ((0g𝐴) ∈ 𝐵𝑋𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((0g𝐴)(-g𝐴)𝑋)𝐽) = ((𝐼(0g𝐴)𝐽)(-g𝑅)(𝐼𝑋𝐽)))
1713, 16syld3an2 1413 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((0g𝐴)(-g𝐴)𝑋)𝐽) = ((𝐼(0g𝐴)𝐽)(-g𝑅)(𝐼𝑋𝐽)))
18 matinvgcell.w . . . . . 6 𝑊 = (invg𝐴)
192, 14, 18, 8grpinvval2 19011 . . . . 5 ((𝐴 ∈ Grp ∧ 𝑋𝐵) → (𝑊𝑋) = ((0g𝐴)(-g𝐴)𝑋))
207, 11, 19syl2anc 584 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑊𝑋) = ((0g𝐴)(-g𝐴)𝑋))
21203adant3 1132 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝑊𝑋) = ((0g𝐴)(-g𝐴)𝑋))
2221oveqd 7427 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑊𝑋)𝐽) = (𝐼((0g𝐴)(-g𝐴)𝑋)𝐽))
23 ringgrp 20203 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
24233ad2ant1 1133 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → 𝑅 ∈ Grp)
25 simp3 1138 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝑁𝐽𝑁))
262eleq2i 2827 . . . . . . . 8 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
2726biimpi 216 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
28273ad2ant2 1134 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → 𝑋 ∈ (Base‘𝐴))
29 df-3an 1088 . . . . . 6 ((𝐼𝑁𝐽𝑁𝑋 ∈ (Base‘𝐴)) ↔ ((𝐼𝑁𝐽𝑁) ∧ 𝑋 ∈ (Base‘𝐴)))
3025, 28, 29sylanbrc 583 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝑁𝐽𝑁𝑋 ∈ (Base‘𝐴)))
31 eqid 2736 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
321, 31matecl 22368 . . . . 5 ((𝐼𝑁𝐽𝑁𝑋 ∈ (Base‘𝐴)) → (𝐼𝑋𝐽) ∈ (Base‘𝑅))
3330, 32syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝑋𝐽) ∈ (Base‘𝑅))
34 matinvgcell.v . . . . 5 𝑉 = (invg𝑅)
35 eqid 2736 . . . . 5 (0g𝑅) = (0g𝑅)
3631, 15, 34, 35grpinvval2 19011 . . . 4 ((𝑅 ∈ Grp ∧ (𝐼𝑋𝐽) ∈ (Base‘𝑅)) → (𝑉‘(𝐼𝑋𝐽)) = ((0g𝑅)(-g𝑅)(𝐼𝑋𝐽)))
3724, 33, 36syl2anc 584 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝑉‘(𝐼𝑋𝐽)) = ((0g𝑅)(-g𝑅)(𝐼𝑋𝐽)))
384anim1i 615 . . . . . . . . 9 ((𝑋𝐵𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3938ancoms 458 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
401, 35mat0op 22362 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ (0g𝑅)))
4139, 40syl 17 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (0g𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ (0g𝑅)))
42413adant3 1132 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (0g𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ (0g𝑅)))
43 eqidd 2737 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) ∧ (𝑥 = 𝐼𝑦 = 𝐽)) → (0g𝑅) = (0g𝑅))
4425simpld 494 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → 𝐼𝑁)
45 simp3r 1203 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → 𝐽𝑁)
46 fvexd 6896 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (0g𝑅) ∈ V)
4742, 43, 44, 45, 46ovmpod 7564 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(0g𝐴)𝐽) = (0g𝑅))
4847eqcomd 2742 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (0g𝑅) = (𝐼(0g𝐴)𝐽))
4948oveq1d 7425 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → ((0g𝑅)(-g𝑅)(𝐼𝑋𝐽)) = ((𝐼(0g𝐴)𝐽)(-g𝑅)(𝐼𝑋𝐽)))
5037, 49eqtrd 2771 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝑉‘(𝐼𝑋𝐽)) = ((𝐼(0g𝐴)𝐽)(-g𝑅)(𝐼𝑋𝐽)))
5117, 22, 503eqtr4d 2781 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑊𝑋)𝐽) = (𝑉‘(𝐼𝑋𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464  cfv 6536  (class class class)co 7410  cmpo 7412  Fincfn 8964  Basecbs 17233  0gc0g 17458  Grpcgrp 18921  invgcminusg 18922  -gcsg 18923  Ringcrg 20198   Mat cmat 22350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-prds 17466  df-pws 17468  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-subrg 20535  df-lmod 20824  df-lss 20894  df-sra 21136  df-rgmod 21137  df-dsmm 21697  df-frlm 21712  df-mat 22351
This theorem is referenced by:  cpmatinvcl  22660
  Copyright terms: Public domain W3C validator