MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matinvgcell Structured version   Visualization version   GIF version

Theorem matinvgcell 22425
Description: Additive inversion in the matrix ring is cell-wise. (Contributed by AV, 17-Nov-2019.)
Hypotheses
Ref Expression
matplusgcell.a 𝐴 = (𝑁 Mat 𝑅)
matplusgcell.b 𝐵 = (Base‘𝐴)
matinvgcell.v 𝑉 = (invg𝑅)
matinvgcell.w 𝑊 = (invg𝐴)
Assertion
Ref Expression
matinvgcell ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑊𝑋)𝐽) = (𝑉‘(𝐼𝑋𝐽)))

Proof of Theorem matinvgcell
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 matplusgcell.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
2 matplusgcell.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
31, 2matrcl 22400 . . . . . . . 8 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 493 . . . . . . 7 (𝑋𝐵𝑁 ∈ Fin)
5 simpl 481 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Ring)
61matgrp 22420 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp)
74, 5, 6syl2an2 684 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝐴 ∈ Grp)
8 eqid 2726 . . . . . . 7 (0g𝐴) = (0g𝐴)
92, 8grpidcl 18955 . . . . . 6 (𝐴 ∈ Grp → (0g𝐴) ∈ 𝐵)
107, 9syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (0g𝐴) ∈ 𝐵)
11 simpr 483 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋𝐵)
1210, 11jca 510 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((0g𝐴) ∈ 𝐵𝑋𝐵))
13123adant3 1129 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → ((0g𝐴) ∈ 𝐵𝑋𝐵))
14 eqid 2726 . . . 4 (-g𝐴) = (-g𝐴)
15 eqid 2726 . . . 4 (-g𝑅) = (-g𝑅)
161, 2, 14, 15matsubgcell 22424 . . 3 ((𝑅 ∈ Ring ∧ ((0g𝐴) ∈ 𝐵𝑋𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((0g𝐴)(-g𝐴)𝑋)𝐽) = ((𝐼(0g𝐴)𝐽)(-g𝑅)(𝐼𝑋𝐽)))
1713, 16syld3an2 1408 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((0g𝐴)(-g𝐴)𝑋)𝐽) = ((𝐼(0g𝐴)𝐽)(-g𝑅)(𝐼𝑋𝐽)))
18 matinvgcell.w . . . . . 6 𝑊 = (invg𝐴)
192, 14, 18, 8grpinvval2 19013 . . . . 5 ((𝐴 ∈ Grp ∧ 𝑋𝐵) → (𝑊𝑋) = ((0g𝐴)(-g𝐴)𝑋))
207, 11, 19syl2anc 582 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑊𝑋) = ((0g𝐴)(-g𝐴)𝑋))
21203adant3 1129 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝑊𝑋) = ((0g𝐴)(-g𝐴)𝑋))
2221oveqd 7433 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑊𝑋)𝐽) = (𝐼((0g𝐴)(-g𝐴)𝑋)𝐽))
23 ringgrp 20217 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
24233ad2ant1 1130 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → 𝑅 ∈ Grp)
25 simp3 1135 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝑁𝐽𝑁))
262eleq2i 2818 . . . . . . . 8 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
2726biimpi 215 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
28273ad2ant2 1131 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → 𝑋 ∈ (Base‘𝐴))
29 df-3an 1086 . . . . . 6 ((𝐼𝑁𝐽𝑁𝑋 ∈ (Base‘𝐴)) ↔ ((𝐼𝑁𝐽𝑁) ∧ 𝑋 ∈ (Base‘𝐴)))
3025, 28, 29sylanbrc 581 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝑁𝐽𝑁𝑋 ∈ (Base‘𝐴)))
31 eqid 2726 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
321, 31matecl 22415 . . . . 5 ((𝐼𝑁𝐽𝑁𝑋 ∈ (Base‘𝐴)) → (𝐼𝑋𝐽) ∈ (Base‘𝑅))
3330, 32syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝑋𝐽) ∈ (Base‘𝑅))
34 matinvgcell.v . . . . 5 𝑉 = (invg𝑅)
35 eqid 2726 . . . . 5 (0g𝑅) = (0g𝑅)
3631, 15, 34, 35grpinvval2 19013 . . . 4 ((𝑅 ∈ Grp ∧ (𝐼𝑋𝐽) ∈ (Base‘𝑅)) → (𝑉‘(𝐼𝑋𝐽)) = ((0g𝑅)(-g𝑅)(𝐼𝑋𝐽)))
3724, 33, 36syl2anc 582 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝑉‘(𝐼𝑋𝐽)) = ((0g𝑅)(-g𝑅)(𝐼𝑋𝐽)))
384anim1i 613 . . . . . . . . 9 ((𝑋𝐵𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3938ancoms 457 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
401, 35mat0op 22409 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ (0g𝑅)))
4139, 40syl 17 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (0g𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ (0g𝑅)))
42413adant3 1129 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (0g𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ (0g𝑅)))
43 eqidd 2727 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) ∧ (𝑥 = 𝐼𝑦 = 𝐽)) → (0g𝑅) = (0g𝑅))
4425simpld 493 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → 𝐼𝑁)
45 simp3r 1199 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → 𝐽𝑁)
46 fvexd 6908 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (0g𝑅) ∈ V)
4742, 43, 44, 45, 46ovmpod 7570 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(0g𝐴)𝐽) = (0g𝑅))
4847eqcomd 2732 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (0g𝑅) = (𝐼(0g𝐴)𝐽))
4948oveq1d 7431 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → ((0g𝑅)(-g𝑅)(𝐼𝑋𝐽)) = ((𝐼(0g𝐴)𝐽)(-g𝑅)(𝐼𝑋𝐽)))
5037, 49eqtrd 2766 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝑉‘(𝐼𝑋𝐽)) = ((𝐼(0g𝐴)𝐽)(-g𝑅)(𝐼𝑋𝐽)))
5117, 22, 503eqtr4d 2776 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑊𝑋)𝐽) = (𝑉‘(𝐼𝑋𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  Vcvv 3462  cfv 6546  (class class class)co 7416  cmpo 7418  Fincfn 8966  Basecbs 17208  0gc0g 17449  Grpcgrp 18923  invgcminusg 18924  -gcsg 18925  Ringcrg 20212   Mat cmat 22395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-ot 4632  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-map 8849  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9399  df-sup 9478  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-z 12605  df-dec 12724  df-uz 12869  df-fz 13533  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-sca 17277  df-vsca 17278  df-ip 17279  df-tset 17280  df-ple 17281  df-ds 17283  df-hom 17285  df-cco 17286  df-0g 17451  df-prds 17457  df-pws 17459  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-grp 18926  df-minusg 18927  df-sbg 18928  df-subg 19113  df-cmn 19776  df-abl 19777  df-mgp 20114  df-rng 20132  df-ur 20161  df-ring 20214  df-subrg 20549  df-lmod 20834  df-lss 20905  df-sra 21147  df-rgmod 21148  df-dsmm 21726  df-frlm 21741  df-mat 22396
This theorem is referenced by:  cpmatinvcl  22707
  Copyright terms: Public domain W3C validator