Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindszr Structured version   Visualization version   GIF version

Theorem lindszr 43889
 Description: Any subset of a module over a zero ring is always linearly independent. (Contributed by AV, 27-Apr-2019.)
Assertion
Ref Expression
lindszr ((𝑀 ∈ LMod ∧ ¬ (Scalar‘𝑀) ∈ NzRing ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → 𝑆 linIndS 𝑀)

Proof of Theorem lindszr
StepHypRef Expression
1 simp2 1117 . . . 4 ((𝑀 ∈ LMod ∧ ¬ (Scalar‘𝑀) ∈ NzRing ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → ¬ (Scalar‘𝑀) ∈ NzRing)
2 eqid 2779 . . . . . . 7 (Scalar‘𝑀) = (Scalar‘𝑀)
32lmodring 19364 . . . . . 6 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Ring)
433ad2ant1 1113 . . . . 5 ((𝑀 ∈ LMod ∧ ¬ (Scalar‘𝑀) ∈ NzRing ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → (Scalar‘𝑀) ∈ Ring)
5 0ringnnzr 19763 . . . . 5 ((Scalar‘𝑀) ∈ Ring → ((♯‘(Base‘(Scalar‘𝑀))) = 1 ↔ ¬ (Scalar‘𝑀) ∈ NzRing))
64, 5syl 17 . . . 4 ((𝑀 ∈ LMod ∧ ¬ (Scalar‘𝑀) ∈ NzRing ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → ((♯‘(Base‘(Scalar‘𝑀))) = 1 ↔ ¬ (Scalar‘𝑀) ∈ NzRing))
71, 6mpbird 249 . . 3 ((𝑀 ∈ LMod ∧ ¬ (Scalar‘𝑀) ∈ NzRing ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → (♯‘(Base‘(Scalar‘𝑀))) = 1)
87olcd 860 . 2 ((𝑀 ∈ LMod ∧ ¬ (Scalar‘𝑀) ∈ NzRing ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → ((♯‘(Base‘(Scalar‘𝑀))) = 0 ∨ (♯‘(Base‘(Scalar‘𝑀))) = 1))
9 eqid 2779 . . 3 (Base‘𝑀) = (Base‘𝑀)
10 eqid 2779 . . 3 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
119, 2, 10lindsrng01 43888 . 2 ((𝑀 ∈ LMod ∧ ((♯‘(Base‘(Scalar‘𝑀))) = 0 ∨ (♯‘(Base‘(Scalar‘𝑀))) = 1) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → 𝑆 linIndS 𝑀)
128, 11syld3an2 1391 1 ((𝑀 ∈ LMod ∧ ¬ (Scalar‘𝑀) ∈ NzRing ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → 𝑆 linIndS 𝑀)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 198   ∨ wo 833   ∧ w3a 1068   = wceq 1507   ∈ wcel 2050  𝒫 cpw 4422   class class class wbr 4929  ‘cfv 6188  0cc0 10335  1c1 10336  ♯chash 13505  Basecbs 16339  Scalarcsca 16424  Ringcrg 19020  LModclmod 19356  NzRingcnzr 19751   linIndS clininds 43860 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-map 8208  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-dju 9124  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-2 11503  df-n0 11708  df-xnn0 11780  df-z 11794  df-uz 12059  df-fz 12709  df-hash 13506  df-ndx 16342  df-slot 16343  df-base 16345  df-sets 16346  df-plusg 16434  df-0g 16571  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-grp 17894  df-minusg 17895  df-mgp 18963  df-ur 18975  df-ring 19022  df-lmod 19358  df-nzr 19752  df-lininds 43862 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator