| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltdivmul | Structured version Visualization version GIF version | ||
| Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 18-Nov-2004.) |
| Ref | Expression |
|---|---|
| ltdivmul | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) < 𝐵 ↔ 𝐴 < (𝐶 · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | remulcl 11240 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ) | |
| 2 | 1 | ancoms 458 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ) |
| 3 | 2 | adantrr 717 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐶 · 𝐵) ∈ ℝ) |
| 4 | 3 | 3adant1 1131 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐶 · 𝐵) ∈ ℝ) |
| 5 | ltdiv1 12132 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐶 · 𝐵) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < (𝐶 · 𝐵) ↔ (𝐴 / 𝐶) < ((𝐶 · 𝐵) / 𝐶))) | |
| 6 | 4, 5 | syld3an2 1413 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < (𝐶 · 𝐵) ↔ (𝐴 / 𝐶) < ((𝐶 · 𝐵) / 𝐶))) |
| 7 | recn 11245 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐵 ∈ ℂ) |
| 9 | recn 11245 | . . . . . 6 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℂ) | |
| 10 | 9 | ad2antrl 728 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐶 ∈ ℂ) |
| 11 | gt0ne0 11728 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ≠ 0) | |
| 12 | 11 | adantl 481 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐶 ≠ 0) |
| 13 | 8, 10, 12 | divcan3d 12048 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵) |
| 14 | 13 | 3adant1 1131 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵) |
| 15 | 14 | breq2d 5155 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) < ((𝐶 · 𝐵) / 𝐶) ↔ (𝐴 / 𝐶) < 𝐵)) |
| 16 | 6, 15 | bitr2d 280 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) < 𝐵 ↔ 𝐴 < (𝐶 · 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 class class class wbr 5143 (class class class)co 7431 ℂcc 11153 ℝcr 11154 0cc0 11155 · cmul 11160 < clt 11295 / cdiv 11920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 |
| This theorem is referenced by: ltdivmul2 12145 lt2mul2div 12146 ltrec 12150 supmul1 12237 avglt2 12505 3halfnz 12697 rpnnen1lem2 13019 rpnnen1lem1 13020 rpnnen1lem3 13021 rpnnen1lem5 13023 ltdivmuld 13128 qbtwnre 13241 modid 13936 expnbnd 14271 mertenslem1 15920 tanhlt1 16196 eirrlem 16240 fldivp1 16935 pcfaclem 16936 4sqlem12 16994 icopnfcnv 24973 ovolscalem1 25548 mbfmulc2lem 25682 itg2monolem3 25787 dveflem 26017 dvlt0 26044 ftc1lem4 26080 radcnvlem1 26456 tangtx 26547 cosne0 26571 cosordlem 26572 efif1olem4 26587 logcnlem4 26687 logf1o2 26692 atantan 26966 atanbndlem 26968 birthdaylem3 26996 basellem3 27126 ppiub 27248 bposlem1 27328 bposlem2 27329 bposlem6 27333 bposlem8 27335 gausslemma2dlem0c 27402 lgsquadlem1 27424 2sqlem8 27470 chebbnd1lem3 27515 chebbnd1 27516 ostth2lem2 27678 ex-fl 30466 nn0prpwlem 36323 ftc1cnnclem 37698 stoweidlem13 46028 logblt1b 48485 fldivexpfllog2 48486 |
| Copyright terms: Public domain | W3C validator |