MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdivmul Structured version   Visualization version   GIF version

Theorem ltdivmul 11507
Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 18-Nov-2004.)
Assertion
Ref Expression
ltdivmul ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) < 𝐵𝐴 < (𝐶 · 𝐵)))

Proof of Theorem ltdivmul
StepHypRef Expression
1 remulcl 10614 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ)
21ancoms 459 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ)
32adantrr 713 . . . 4 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐶 · 𝐵) ∈ ℝ)
433adant1 1124 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐶 · 𝐵) ∈ ℝ)
5 ltdiv1 11496 . . 3 ((𝐴 ∈ ℝ ∧ (𝐶 · 𝐵) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < (𝐶 · 𝐵) ↔ (𝐴 / 𝐶) < ((𝐶 · 𝐵) / 𝐶)))
64, 5syld3an2 1405 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < (𝐶 · 𝐵) ↔ (𝐴 / 𝐶) < ((𝐶 · 𝐵) / 𝐶)))
7 recn 10619 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
87adantr 481 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐵 ∈ ℂ)
9 recn 10619 . . . . . 6 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
109ad2antrl 724 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐶 ∈ ℂ)
11 gt0ne0 11097 . . . . . 6 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ≠ 0)
1211adantl 482 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐶 ≠ 0)
138, 10, 12divcan3d 11413 . . . 4 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵)
14133adant1 1124 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵)
1514breq2d 5074 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) < ((𝐶 · 𝐵) / 𝐶) ↔ (𝐴 / 𝐶) < 𝐵))
166, 15bitr2d 281 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) < 𝐵𝐴 < (𝐶 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3020   class class class wbr 5062  (class class class)co 7151  cc 10527  cr 10528  0cc0 10529   · cmul 10534   < clt 10667   / cdiv 11289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290
This theorem is referenced by:  ltdivmul2  11509  lt2mul2div  11510  ltrec  11514  supmul1  11602  avglt2  11868  3halfnz  12053  rpnnen1lem2  12369  rpnnen1lem1  12370  rpnnen1lem3  12371  rpnnen1lem5  12373  ltdivmuld  12475  qbtwnre  12585  modid  13257  expnbnd  13586  mertenslem1  15232  tanhlt1  15505  eirrlem  15549  fldivp1  16225  pcfaclem  16226  4sqlem12  16284  icopnfcnv  23463  ovolscalem1  24031  mbfmulc2lem  24165  itg2monolem3  24270  dveflem  24493  dvlt0  24519  ftc1lem4  24553  radcnvlem1  24918  tangtx  25008  cosne0  25029  cosordlem  25030  efif1olem4  25044  logcnlem4  25143  logf1o2  25148  atantan  25416  atanbndlem  25418  birthdaylem3  25447  basellem3  25576  ppiub  25696  bposlem1  25776  bposlem2  25777  bposlem6  25781  bposlem8  25783  gausslemma2dlem0c  25850  lgsquadlem1  25872  2sqlem8  25918  chebbnd1lem3  25963  chebbnd1  25964  ostth2lem2  26126  ex-fl  28142  nn0prpwlem  33556  ftc1cnnclem  34834  stoweidlem13  42166  logblt1b  44458  fldivexpfllog2  44459
  Copyright terms: Public domain W3C validator