MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdivmul Structured version   Visualization version   GIF version

Theorem ltdivmul 12094
Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 18-Nov-2004.)
Assertion
Ref Expression
ltdivmul ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ((๐ด / ๐ถ) < ๐ต โ†” ๐ด < (๐ถ ยท ๐ต)))

Proof of Theorem ltdivmul
StepHypRef Expression
1 remulcl 11198 . . . . . 6 ((๐ถ โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (๐ถ ยท ๐ต) โˆˆ โ„)
21ancoms 458 . . . . 5 ((๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โ†’ (๐ถ ยท ๐ต) โˆˆ โ„)
32adantrr 714 . . . 4 ((๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ถ ยท ๐ต) โˆˆ โ„)
433adant1 1129 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ถ ยท ๐ต) โˆˆ โ„)
5 ltdiv1 12083 . . 3 ((๐ด โˆˆ โ„ โˆง (๐ถ ยท ๐ต) โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด < (๐ถ ยท ๐ต) โ†” (๐ด / ๐ถ) < ((๐ถ ยท ๐ต) / ๐ถ)))
64, 5syld3an2 1410 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ (๐ด < (๐ถ ยท ๐ต) โ†” (๐ด / ๐ถ) < ((๐ถ ยท ๐ต) / ๐ถ)))
7 recn 11203 . . . . . 6 (๐ต โˆˆ โ„ โ†’ ๐ต โˆˆ โ„‚)
87adantr 480 . . . . 5 ((๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ๐ต โˆˆ โ„‚)
9 recn 11203 . . . . . 6 (๐ถ โˆˆ โ„ โ†’ ๐ถ โˆˆ โ„‚)
109ad2antrl 725 . . . . 5 ((๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ๐ถ โˆˆ โ„‚)
11 gt0ne0 11684 . . . . . 6 ((๐ถ โˆˆ โ„ โˆง 0 < ๐ถ) โ†’ ๐ถ โ‰  0)
1211adantl 481 . . . . 5 ((๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ๐ถ โ‰  0)
138, 10, 12divcan3d 12000 . . . 4 ((๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ((๐ถ ยท ๐ต) / ๐ถ) = ๐ต)
14133adant1 1129 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ((๐ถ ยท ๐ต) / ๐ถ) = ๐ต)
1514breq2d 5160 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ((๐ด / ๐ถ) < ((๐ถ ยท ๐ต) / ๐ถ) โ†” (๐ด / ๐ถ) < ๐ต))
166, 15bitr2d 280 1 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ((๐ด / ๐ถ) < ๐ต โ†” ๐ด < (๐ถ ยท ๐ต)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   โˆง w3a 1086   = wceq 1540   โˆˆ wcel 2105   โ‰  wne 2939   class class class wbr 5148  (class class class)co 7412  โ„‚cc 11111  โ„cr 11112  0cc0 11113   ยท cmul 11118   < clt 11253   / cdiv 11876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877
This theorem is referenced by:  ltdivmul2  12096  lt2mul2div  12097  ltrec  12101  supmul1  12188  avglt2  12456  3halfnz  12646  rpnnen1lem2  12966  rpnnen1lem1  12967  rpnnen1lem3  12968  rpnnen1lem5  12970  ltdivmuld  13072  qbtwnre  13183  modid  13866  expnbnd  14200  mertenslem1  15835  tanhlt1  16108  eirrlem  16152  fldivp1  16835  pcfaclem  16836  4sqlem12  16894  icopnfcnv  24688  ovolscalem1  25263  mbfmulc2lem  25397  itg2monolem3  25503  dveflem  25732  dvlt0  25758  ftc1lem4  25792  radcnvlem1  26162  tangtx  26252  cosne0  26275  cosordlem  26276  efif1olem4  26291  logcnlem4  26390  logf1o2  26395  atantan  26665  atanbndlem  26667  birthdaylem3  26695  basellem3  26824  ppiub  26944  bposlem1  27024  bposlem2  27025  bposlem6  27029  bposlem8  27031  gausslemma2dlem0c  27098  lgsquadlem1  27120  2sqlem8  27166  chebbnd1lem3  27211  chebbnd1  27212  ostth2lem2  27374  ex-fl  29968  nn0prpwlem  35511  ftc1cnnclem  36863  stoweidlem13  45028  logblt1b  47338  fldivexpfllog2  47339
  Copyright terms: Public domain W3C validator