![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltdivmul | Structured version Visualization version GIF version |
Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 18-Nov-2004.) |
Ref | Expression |
---|---|
ltdivmul | โข ((๐ด โ โ โง ๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ ((๐ด / ๐ถ) < ๐ต โ ๐ด < (๐ถ ยท ๐ต))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | remulcl 11197 | . . . . . 6 โข ((๐ถ โ โ โง ๐ต โ โ) โ (๐ถ ยท ๐ต) โ โ) | |
2 | 1 | ancoms 457 | . . . . 5 โข ((๐ต โ โ โง ๐ถ โ โ) โ (๐ถ ยท ๐ต) โ โ) |
3 | 2 | adantrr 713 | . . . 4 โข ((๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ (๐ถ ยท ๐ต) โ โ) |
4 | 3 | 3adant1 1128 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ (๐ถ ยท ๐ต) โ โ) |
5 | ltdiv1 12082 | . . 3 โข ((๐ด โ โ โง (๐ถ ยท ๐ต) โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ (๐ด < (๐ถ ยท ๐ต) โ (๐ด / ๐ถ) < ((๐ถ ยท ๐ต) / ๐ถ))) | |
6 | 4, 5 | syld3an2 1409 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ (๐ด < (๐ถ ยท ๐ต) โ (๐ด / ๐ถ) < ((๐ถ ยท ๐ต) / ๐ถ))) |
7 | recn 11202 | . . . . . 6 โข (๐ต โ โ โ ๐ต โ โ) | |
8 | 7 | adantr 479 | . . . . 5 โข ((๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ ๐ต โ โ) |
9 | recn 11202 | . . . . . 6 โข (๐ถ โ โ โ ๐ถ โ โ) | |
10 | 9 | ad2antrl 724 | . . . . 5 โข ((๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ ๐ถ โ โ) |
11 | gt0ne0 11683 | . . . . . 6 โข ((๐ถ โ โ โง 0 < ๐ถ) โ ๐ถ โ 0) | |
12 | 11 | adantl 480 | . . . . 5 โข ((๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ ๐ถ โ 0) |
13 | 8, 10, 12 | divcan3d 11999 | . . . 4 โข ((๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ ((๐ถ ยท ๐ต) / ๐ถ) = ๐ต) |
14 | 13 | 3adant1 1128 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ ((๐ถ ยท ๐ต) / ๐ถ) = ๐ต) |
15 | 14 | breq2d 5159 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ ((๐ด / ๐ถ) < ((๐ถ ยท ๐ต) / ๐ถ) โ (๐ด / ๐ถ) < ๐ต)) |
16 | 6, 15 | bitr2d 279 | 1 โข ((๐ด โ โ โง ๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ ((๐ด / ๐ถ) < ๐ต โ ๐ด < (๐ถ ยท ๐ต))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 โง wa 394 โง w3a 1085 = wceq 1539 โ wcel 2104 โ wne 2938 class class class wbr 5147 (class class class)co 7411 โcc 11110 โcr 11111 0cc0 11112 ยท cmul 11117 < clt 11252 / cdiv 11875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 |
This theorem is referenced by: ltdivmul2 12095 lt2mul2div 12096 ltrec 12100 supmul1 12187 avglt2 12455 3halfnz 12645 rpnnen1lem2 12965 rpnnen1lem1 12966 rpnnen1lem3 12967 rpnnen1lem5 12969 ltdivmuld 13071 qbtwnre 13182 modid 13865 expnbnd 14199 mertenslem1 15834 tanhlt1 16107 eirrlem 16151 fldivp1 16834 pcfaclem 16835 4sqlem12 16893 icopnfcnv 24687 ovolscalem1 25262 mbfmulc2lem 25396 itg2monolem3 25502 dveflem 25731 dvlt0 25757 ftc1lem4 25791 radcnvlem1 26161 tangtx 26251 cosne0 26274 cosordlem 26275 efif1olem4 26290 logcnlem4 26389 logf1o2 26394 atantan 26664 atanbndlem 26666 birthdaylem3 26694 basellem3 26823 ppiub 26943 bposlem1 27023 bposlem2 27024 bposlem6 27028 bposlem8 27030 gausslemma2dlem0c 27097 lgsquadlem1 27119 2sqlem8 27165 chebbnd1lem3 27210 chebbnd1 27211 ostth2lem2 27373 ex-fl 29967 nn0prpwlem 35510 ftc1cnnclem 36862 stoweidlem13 45027 logblt1b 47337 fldivexpfllog2 47338 |
Copyright terms: Public domain | W3C validator |