MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlemin Structured version   Visualization version   GIF version

Theorem xrlemin 12918
Description: Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
xrlemin ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ≤ if(𝐵𝐶, 𝐵, 𝐶) ↔ (𝐴𝐵𝐴𝐶)))

Proof of Theorem xrlemin
StepHypRef Expression
1 xrmin1 12911 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐵)
213adant1 1129 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐵)
3 simp1 1135 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
4 ifcl 4504 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ∈ ℝ*)
543adant1 1129 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ∈ ℝ*)
6 simp2 1136 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*)
7 xrletr 12892 . . . . 5 ((𝐴 ∈ ℝ* ∧ if(𝐵𝐶, 𝐵, 𝐶) ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 ≤ if(𝐵𝐶, 𝐵, 𝐶) ∧ if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐵) → 𝐴𝐵))
83, 5, 6, 7syl3anc 1370 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐵𝐶, 𝐵, 𝐶) ∧ if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐵) → 𝐴𝐵))
92, 8mpan2d 691 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ≤ if(𝐵𝐶, 𝐵, 𝐶) → 𝐴𝐵))
10 xrmin2 12912 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐶)
11103adant1 1129 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐶)
12 xrletr 12892 . . . . 5 ((𝐴 ∈ ℝ* ∧ if(𝐵𝐶, 𝐵, 𝐶) ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐵𝐶, 𝐵, 𝐶) ∧ if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐶) → 𝐴𝐶))
135, 12syld3an2 1410 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐵𝐶, 𝐵, 𝐶) ∧ if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐶) → 𝐴𝐶))
1411, 13mpan2d 691 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ≤ if(𝐵𝐶, 𝐵, 𝐶) → 𝐴𝐶))
159, 14jcad 513 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ≤ if(𝐵𝐶, 𝐵, 𝐶) → (𝐴𝐵𝐴𝐶)))
16 breq2 5078 . . 3 (𝐵 = if(𝐵𝐶, 𝐵, 𝐶) → (𝐴𝐵𝐴 ≤ if(𝐵𝐶, 𝐵, 𝐶)))
17 breq2 5078 . . 3 (𝐶 = if(𝐵𝐶, 𝐵, 𝐶) → (𝐴𝐶𝐴 ≤ if(𝐵𝐶, 𝐵, 𝐶)))
1816, 17ifboth 4498 . 2 ((𝐴𝐵𝐴𝐶) → 𝐴 ≤ if(𝐵𝐶, 𝐵, 𝐶))
1915, 18impbid1 224 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ≤ if(𝐵𝐶, 𝐵, 𝐶) ↔ (𝐴𝐵𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2106  ifcif 4459   class class class wbr 5074  *cxr 11008  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015
This theorem is referenced by:  lemin  12926  stdbdxmet  23671  stdbdbl  23673  itgspliticc  25001  cvmliftlem10  33256  iccin  46190
  Copyright terms: Public domain W3C validator