![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrlemin | Structured version Visualization version GIF version |
Description: Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
xrlemin | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrmin1 12257 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐵) | |
2 | 1 | 3adant1 1161 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐵) |
3 | simp1 1167 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*) | |
4 | ifcl 4321 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∈ ℝ*) | |
5 | 4 | 3adant1 1161 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∈ ℝ*) |
6 | simp2 1168 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*) | |
7 | xrletr 12238 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∧ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐵) → 𝐴 ≤ 𝐵)) | |
8 | 3, 5, 6, 7 | syl3anc 1491 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∧ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐵) → 𝐴 ≤ 𝐵)) |
9 | 2, 8 | mpan2d 686 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) → 𝐴 ≤ 𝐵)) |
10 | xrmin2 12258 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐶) | |
11 | 10 | 3adant1 1161 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐶) |
12 | xrletr 12238 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∧ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐶) → 𝐴 ≤ 𝐶)) | |
13 | 5, 12 | syld3an2 1532 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ∧ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
14 | 11, 13 | mpan2d 686 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) → 𝐴 ≤ 𝐶)) |
15 | 9, 14 | jcad 509 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) → (𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) |
16 | breq2 4847 | . . 3 ⊢ (𝐵 = if(𝐵 ≤ 𝐶, 𝐵, 𝐶) → (𝐴 ≤ 𝐵 ↔ 𝐴 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶))) | |
17 | breq2 4847 | . . 3 ⊢ (𝐶 = if(𝐵 ≤ 𝐶, 𝐵, 𝐶) → (𝐴 ≤ 𝐶 ↔ 𝐴 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶))) | |
18 | 16, 17 | ifboth 4315 | . 2 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶) → 𝐴 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶)) |
19 | 15, 18 | impbid1 217 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 ∈ wcel 2157 ifcif 4277 class class class wbr 4843 ℝ*cxr 10362 ≤ cle 10364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-pre-lttri 10298 ax-pre-lttrn 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 |
This theorem is referenced by: lemin 12272 stdbdxmet 22648 stdbdbl 22650 itgspliticc 23944 cvmliftlem10 31793 |
Copyright terms: Public domain | W3C validator |