MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subdivcomb2 Structured version   Visualization version   GIF version

Theorem subdivcomb2 11914
Description: Bring a term in a subtraction into the numerator. (Contributed by Scott Fenton, 3-Jul-2013.)
Assertion
Ref Expression
subdivcomb2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ((๐ด โˆ’ (๐ถ ยท ๐ต)) / ๐ถ) = ((๐ด / ๐ถ) โˆ’ ๐ต))

Proof of Theorem subdivcomb2
StepHypRef Expression
1 simp3l 1198 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ๐ถ โˆˆ โ„‚)
2 simp2 1134 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ๐ต โˆˆ โ„‚)
31, 2mulcld 11238 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ (๐ถ ยท ๐ต) โˆˆ โ„‚)
4 divsubdir 11912 . . 3 ((๐ด โˆˆ โ„‚ โˆง (๐ถ ยท ๐ต) โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ((๐ด โˆ’ (๐ถ ยท ๐ต)) / ๐ถ) = ((๐ด / ๐ถ) โˆ’ ((๐ถ ยท ๐ต) / ๐ถ)))
53, 4syld3an2 1408 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ((๐ด โˆ’ (๐ถ ยท ๐ต)) / ๐ถ) = ((๐ด / ๐ถ) โˆ’ ((๐ถ ยท ๐ต) / ๐ถ)))
6 simprl 768 . . . . . 6 ((๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ๐ถ โˆˆ โ„‚)
7 simpl 482 . . . . . 6 ((๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ๐ต โˆˆ โ„‚)
8 simpr 484 . . . . . 6 ((๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0))
9 div23 11895 . . . . . 6 ((๐ถ โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ((๐ถ ยท ๐ต) / ๐ถ) = ((๐ถ / ๐ถ) ยท ๐ต))
106, 7, 8, 9syl3anc 1368 . . . . 5 ((๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ((๐ถ ยท ๐ต) / ๐ถ) = ((๐ถ / ๐ถ) ยท ๐ต))
11 divid 11905 . . . . . . 7 ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โ†’ (๐ถ / ๐ถ) = 1)
1211oveq1d 7420 . . . . . 6 ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โ†’ ((๐ถ / ๐ถ) ยท ๐ต) = (1 ยท ๐ต))
13 mullid 11217 . . . . . 6 (๐ต โˆˆ โ„‚ โ†’ (1 ยท ๐ต) = ๐ต)
1412, 13sylan9eqr 2788 . . . . 5 ((๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ((๐ถ / ๐ถ) ยท ๐ต) = ๐ต)
1510, 14eqtrd 2766 . . . 4 ((๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ((๐ถ ยท ๐ต) / ๐ถ) = ๐ต)
16153adant1 1127 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ((๐ถ ยท ๐ต) / ๐ถ) = ๐ต)
1716oveq2d 7421 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ((๐ด / ๐ถ) โˆ’ ((๐ถ ยท ๐ต) / ๐ถ)) = ((๐ด / ๐ถ) โˆ’ ๐ต))
185, 17eqtrd 2766 1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ((๐ด โˆ’ (๐ถ ยท ๐ต)) / ๐ถ) = ((๐ด / ๐ถ) โˆ’ ๐ต))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   โˆง w3a 1084   = wceq 1533   โˆˆ wcel 2098   โ‰  wne 2934  (class class class)co 7405  โ„‚cc 11110  0cc0 11112  1c1 11113   ยท cmul 11117   โˆ’ cmin 11448   / cdiv 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876
This theorem is referenced by:  eenglngeehlnmlem2  47704
  Copyright terms: Public domain W3C validator