| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdssub2 | Structured version Visualization version GIF version | ||
| Description: If an integer divides a difference, then it divides one term iff it divides the other. (Contributed by Mario Carneiro, 13-Jul-2014.) |
| Ref | Expression |
|---|---|
| dvdssub2 | ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀 − 𝑁)) → (𝐾 ∥ 𝑀 ↔ 𝐾 ∥ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsubcl 12627 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) | |
| 2 | 1 | 3adant1 1130 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) |
| 3 | dvds2sub 16297 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 𝑁) ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ (𝑀 − 𝑁)) → 𝐾 ∥ (𝑀 − (𝑀 − 𝑁)))) | |
| 4 | 2, 3 | syld3an3 1410 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ (𝑀 − 𝑁)) → 𝐾 ∥ (𝑀 − (𝑀 − 𝑁)))) |
| 5 | 4 | ancomsd 465 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑀) → 𝐾 ∥ (𝑀 − (𝑀 − 𝑁)))) |
| 6 | 5 | imp 406 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑀)) → 𝐾 ∥ (𝑀 − (𝑀 − 𝑁))) |
| 7 | zcn 12586 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 8 | zcn 12586 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 9 | nncan 11505 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 − (𝑀 − 𝑁)) = 𝑁) | |
| 10 | 7, 8, 9 | syl2an 596 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − (𝑀 − 𝑁)) = 𝑁) |
| 11 | 10 | 3adant1 1130 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − (𝑀 − 𝑁)) = 𝑁) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑀)) → (𝑀 − (𝑀 − 𝑁)) = 𝑁) |
| 13 | 6, 12 | breqtrd 5143 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑀)) → 𝐾 ∥ 𝑁) |
| 14 | 13 | expr 456 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀 − 𝑁)) → (𝐾 ∥ 𝑀 → 𝐾 ∥ 𝑁)) |
| 15 | dvds2add 16296 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ (𝑀 − 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ ((𝑀 − 𝑁) + 𝑁))) | |
| 16 | 2, 15 | syld3an2 1412 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ ((𝑀 − 𝑁) + 𝑁))) |
| 17 | 16 | imp 406 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑁)) → 𝐾 ∥ ((𝑀 − 𝑁) + 𝑁)) |
| 18 | npcan 11484 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 − 𝑁) + 𝑁) = 𝑀) | |
| 19 | 7, 8, 18 | syl2an 596 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 𝑁) + 𝑁) = 𝑀) |
| 20 | 19 | 3adant1 1130 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 𝑁) + 𝑁) = 𝑀) |
| 21 | 20 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑁)) → ((𝑀 − 𝑁) + 𝑁) = 𝑀) |
| 22 | 17, 21 | breqtrd 5143 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑁)) → 𝐾 ∥ 𝑀) |
| 23 | 22 | expr 456 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀 − 𝑁)) → (𝐾 ∥ 𝑁 → 𝐾 ∥ 𝑀)) |
| 24 | 14, 23 | impbid 212 | 1 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀 − 𝑁)) → (𝐾 ∥ 𝑀 ↔ 𝐾 ∥ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5117 (class class class)co 7400 ℂcc 11120 + caddc 11125 − cmin 11459 ℤcz 12581 ∥ cdvds 16259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-n0 12495 df-z 12582 df-dvds 16260 |
| This theorem is referenced by: dvdsadd 16308 3dvds 16337 bitsmod 16442 bitsinv1lem 16447 sylow2blem3 19590 znunit 21511 perfectlem1 27178 lgsqr 27300 lgsqrmodndvds 27302 2sqlem8 27375 poimirlem28 37601 jm2.20nn 42953 |
| Copyright terms: Public domain | W3C validator |