MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdssub2 Structured version   Visualization version   GIF version

Theorem dvdssub2 15647
Description: If an integer divides a difference, then it divides one term iff it divides the other. (Contributed by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
dvdssub2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀𝑁)) → (𝐾𝑀𝐾𝑁))

Proof of Theorem dvdssub2
StepHypRef Expression
1 zsubcl 12016 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
213adant1 1127 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
3 dvds2sub 15640 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ) → ((𝐾𝑀𝐾 ∥ (𝑀𝑁)) → 𝐾 ∥ (𝑀 − (𝑀𝑁))))
42, 3syld3an3 1406 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝐾 ∥ (𝑀𝑁)) → 𝐾 ∥ (𝑀 − (𝑀𝑁))))
54ancomsd 469 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑀) → 𝐾 ∥ (𝑀 − (𝑀𝑁))))
65imp 410 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑀)) → 𝐾 ∥ (𝑀 − (𝑀𝑁)))
7 zcn 11978 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
8 zcn 11978 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
9 nncan 10908 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 − (𝑀𝑁)) = 𝑁)
107, 8, 9syl2an 598 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − (𝑀𝑁)) = 𝑁)
11103adant1 1127 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − (𝑀𝑁)) = 𝑁)
1211adantr 484 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑀)) → (𝑀 − (𝑀𝑁)) = 𝑁)
136, 12breqtrd 5059 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑀)) → 𝐾𝑁)
1413expr 460 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀𝑁)) → (𝐾𝑀𝐾𝑁))
15 dvds2add 15639 . . . . . 6 ((𝐾 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑁) → 𝐾 ∥ ((𝑀𝑁) + 𝑁)))
162, 15syld3an2 1408 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑁) → 𝐾 ∥ ((𝑀𝑁) + 𝑁)))
1716imp 410 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑁)) → 𝐾 ∥ ((𝑀𝑁) + 𝑁))
18 npcan 10888 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀𝑁) + 𝑁) = 𝑀)
197, 8, 18syl2an 598 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁) + 𝑁) = 𝑀)
20193adant1 1127 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁) + 𝑁) = 𝑀)
2120adantr 484 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑁)) → ((𝑀𝑁) + 𝑁) = 𝑀)
2217, 21breqtrd 5059 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑁)) → 𝐾𝑀)
2322expr 460 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀𝑁)) → (𝐾𝑁𝐾𝑀))
2414, 23impbid 215 1 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀𝑁)) → (𝐾𝑀𝐾𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112   class class class wbr 5033  (class class class)co 7139  cc 10528   + caddc 10533  cmin 10863  cz 11973  cdvds 15603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-dvds 15604
This theorem is referenced by:  dvdsadd  15648  3dvds  15676  bitsmod  15779  bitsinv1lem  15784  sylow2blem3  18743  znunit  20259  perfectlem1  25817  lgsqr  25939  lgsqrmodndvds  25941  2sqlem8  26014  poimirlem28  35084  jm2.20nn  39935
  Copyright terms: Public domain W3C validator