![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdssub2 | Structured version Visualization version GIF version |
Description: If an integer divides a difference, then it divides one term iff it divides the other. (Contributed by Mario Carneiro, 13-Jul-2014.) |
Ref | Expression |
---|---|
dvdssub2 | ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀 − 𝑁)) → (𝐾 ∥ 𝑀 ↔ 𝐾 ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsubcl 12685 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) | |
2 | 1 | 3adant1 1130 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) |
3 | dvds2sub 16339 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 𝑁) ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ (𝑀 − 𝑁)) → 𝐾 ∥ (𝑀 − (𝑀 − 𝑁)))) | |
4 | 2, 3 | syld3an3 1409 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ (𝑀 − 𝑁)) → 𝐾 ∥ (𝑀 − (𝑀 − 𝑁)))) |
5 | 4 | ancomsd 465 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑀) → 𝐾 ∥ (𝑀 − (𝑀 − 𝑁)))) |
6 | 5 | imp 406 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑀)) → 𝐾 ∥ (𝑀 − (𝑀 − 𝑁))) |
7 | zcn 12644 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
8 | zcn 12644 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
9 | nncan 11565 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 − (𝑀 − 𝑁)) = 𝑁) | |
10 | 7, 8, 9 | syl2an 595 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − (𝑀 − 𝑁)) = 𝑁) |
11 | 10 | 3adant1 1130 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − (𝑀 − 𝑁)) = 𝑁) |
12 | 11 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑀)) → (𝑀 − (𝑀 − 𝑁)) = 𝑁) |
13 | 6, 12 | breqtrd 5192 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑀)) → 𝐾 ∥ 𝑁) |
14 | 13 | expr 456 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀 − 𝑁)) → (𝐾 ∥ 𝑀 → 𝐾 ∥ 𝑁)) |
15 | dvds2add 16338 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ (𝑀 − 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ ((𝑀 − 𝑁) + 𝑁))) | |
16 | 2, 15 | syld3an2 1411 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ ((𝑀 − 𝑁) + 𝑁))) |
17 | 16 | imp 406 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑁)) → 𝐾 ∥ ((𝑀 − 𝑁) + 𝑁)) |
18 | npcan 11545 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 − 𝑁) + 𝑁) = 𝑀) | |
19 | 7, 8, 18 | syl2an 595 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 𝑁) + 𝑁) = 𝑀) |
20 | 19 | 3adant1 1130 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 𝑁) + 𝑁) = 𝑀) |
21 | 20 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑁)) → ((𝑀 − 𝑁) + 𝑁) = 𝑀) |
22 | 17, 21 | breqtrd 5192 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑁)) → 𝐾 ∥ 𝑀) |
23 | 22 | expr 456 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀 − 𝑁)) → (𝐾 ∥ 𝑁 → 𝐾 ∥ 𝑀)) |
24 | 14, 23 | impbid 212 | 1 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀 − 𝑁)) → (𝐾 ∥ 𝑀 ↔ 𝐾 ∥ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℂcc 11182 + caddc 11187 − cmin 11520 ℤcz 12639 ∥ cdvds 16302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-dvds 16303 |
This theorem is referenced by: dvdsadd 16350 3dvds 16379 bitsmod 16482 bitsinv1lem 16487 sylow2blem3 19664 znunit 21605 perfectlem1 27291 lgsqr 27413 lgsqrmodndvds 27415 2sqlem8 27488 poimirlem28 37608 jm2.20nn 42954 |
Copyright terms: Public domain | W3C validator |