| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pcprendvds | Structured version Visualization version GIF version | ||
| Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| Ref | Expression |
|---|---|
| pclem.1 | ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} |
| pclem.2 | ⊢ 𝑆 = sup(𝐴, ℝ, < ) |
| Ref | Expression |
|---|---|
| pcprendvds | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pclem.1 | . . . . 5 ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} | |
| 2 | pclem.2 | . . . . 5 ⊢ 𝑆 = sup(𝐴, ℝ, < ) | |
| 3 | 1, 2 | pcprecl 16769 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) |
| 4 | 3 | simpld 494 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0) |
| 5 | nn0re 12411 | . . 3 ⊢ (𝑆 ∈ ℕ0 → 𝑆 ∈ ℝ) | |
| 6 | ltp1 11982 | . . . 4 ⊢ (𝑆 ∈ ℝ → 𝑆 < (𝑆 + 1)) | |
| 7 | peano2re 11307 | . . . . 5 ⊢ (𝑆 ∈ ℝ → (𝑆 + 1) ∈ ℝ) | |
| 8 | ltnle 11213 | . . . . 5 ⊢ ((𝑆 ∈ ℝ ∧ (𝑆 + 1) ∈ ℝ) → (𝑆 < (𝑆 + 1) ↔ ¬ (𝑆 + 1) ≤ 𝑆)) | |
| 9 | 7, 8 | mpdan 687 | . . . 4 ⊢ (𝑆 ∈ ℝ → (𝑆 < (𝑆 + 1) ↔ ¬ (𝑆 + 1) ≤ 𝑆)) |
| 10 | 6, 9 | mpbid 232 | . . 3 ⊢ (𝑆 ∈ ℝ → ¬ (𝑆 + 1) ≤ 𝑆) |
| 11 | 4, 5, 10 | 3syl 18 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑆 + 1) ≤ 𝑆) |
| 12 | 1 | pclem 16768 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
| 13 | peano2nn0 12442 | . . . 4 ⊢ (𝑆 ∈ ℕ0 → (𝑆 + 1) ∈ ℕ0) | |
| 14 | oveq2 7361 | . . . . . . 7 ⊢ (𝑥 = (𝑆 + 1) → (𝑃↑𝑥) = (𝑃↑(𝑆 + 1))) | |
| 15 | 14 | breq1d 5105 | . . . . . 6 ⊢ (𝑥 = (𝑆 + 1) → ((𝑃↑𝑥) ∥ 𝑁 ↔ (𝑃↑(𝑆 + 1)) ∥ 𝑁)) |
| 16 | oveq2 7361 | . . . . . . . . 9 ⊢ (𝑛 = 𝑥 → (𝑃↑𝑛) = (𝑃↑𝑥)) | |
| 17 | 16 | breq1d 5105 | . . . . . . . 8 ⊢ (𝑛 = 𝑥 → ((𝑃↑𝑛) ∥ 𝑁 ↔ (𝑃↑𝑥) ∥ 𝑁)) |
| 18 | 17 | cbvrabv 3407 | . . . . . . 7 ⊢ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} = {𝑥 ∈ ℕ0 ∣ (𝑃↑𝑥) ∥ 𝑁} |
| 19 | 1, 18 | eqtri 2752 | . . . . . 6 ⊢ 𝐴 = {𝑥 ∈ ℕ0 ∣ (𝑃↑𝑥) ∥ 𝑁} |
| 20 | 15, 19 | elrab2 3653 | . . . . 5 ⊢ ((𝑆 + 1) ∈ 𝐴 ↔ ((𝑆 + 1) ∈ ℕ0 ∧ (𝑃↑(𝑆 + 1)) ∥ 𝑁)) |
| 21 | 20 | simplbi2 500 | . . . 4 ⊢ ((𝑆 + 1) ∈ ℕ0 → ((𝑃↑(𝑆 + 1)) ∥ 𝑁 → (𝑆 + 1) ∈ 𝐴)) |
| 22 | 4, 13, 21 | 3syl 18 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 1)) ∥ 𝑁 → (𝑆 + 1) ∈ 𝐴)) |
| 23 | suprzub 12858 | . . . . . 6 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ (𝑆 + 1) ∈ 𝐴) → (𝑆 + 1) ≤ sup(𝐴, ℝ, < )) | |
| 24 | 23, 2 | breqtrrdi 5137 | . . . . 5 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ (𝑆 + 1) ∈ 𝐴) → (𝑆 + 1) ≤ 𝑆) |
| 25 | 24 | 3expia 1121 | . . . 4 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ((𝑆 + 1) ∈ 𝐴 → (𝑆 + 1) ≤ 𝑆)) |
| 26 | 25 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ((𝑆 + 1) ∈ 𝐴 → (𝑆 + 1) ≤ 𝑆)) |
| 27 | 12, 22, 26 | sylsyld 61 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 1)) ∥ 𝑁 → (𝑆 + 1) ≤ 𝑆)) |
| 28 | 11, 27 | mtod 198 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3396 ⊆ wss 3905 ∅c0 4286 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 supcsup 9349 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 < clt 11168 ≤ cle 11169 2c2 12201 ℕ0cn0 12402 ℤcz 12489 ℤ≥cuz 12753 ↑cexp 13986 ∥ cdvds 16181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fl 13714 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-dvds 16182 |
| This theorem is referenced by: pcprendvds2 16771 pczndvds 16795 |
| Copyright terms: Public domain | W3C validator |