MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcprendvds Structured version   Visualization version   GIF version

Theorem pcprendvds 16782
Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pclem.1 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
pclem.2 𝑆 = sup(𝐴, ℝ, < )
Assertion
Ref Expression
pcprendvds ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁)
Distinct variable groups:   𝑛,𝑁   𝑃,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑆(𝑛)

Proof of Theorem pcprendvds
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pclem.1 . . . . 5 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
2 pclem.2 . . . . 5 𝑆 = sup(𝐴, ℝ, < )
31, 2pcprecl 16781 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑁))
43simpld 494 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0)
5 nn0re 12485 . . 3 (𝑆 ∈ ℕ0𝑆 ∈ ℝ)
6 ltp1 12058 . . . 4 (𝑆 ∈ ℝ → 𝑆 < (𝑆 + 1))
7 peano2re 11391 . . . . 5 (𝑆 ∈ ℝ → (𝑆 + 1) ∈ ℝ)
8 ltnle 11297 . . . . 5 ((𝑆 ∈ ℝ ∧ (𝑆 + 1) ∈ ℝ) → (𝑆 < (𝑆 + 1) ↔ ¬ (𝑆 + 1) ≤ 𝑆))
97, 8mpdan 684 . . . 4 (𝑆 ∈ ℝ → (𝑆 < (𝑆 + 1) ↔ ¬ (𝑆 + 1) ≤ 𝑆))
106, 9mpbid 231 . . 3 (𝑆 ∈ ℝ → ¬ (𝑆 + 1) ≤ 𝑆)
114, 5, 103syl 18 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑆 + 1) ≤ 𝑆)
121pclem 16780 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥))
13 peano2nn0 12516 . . . 4 (𝑆 ∈ ℕ0 → (𝑆 + 1) ∈ ℕ0)
14 oveq2 7413 . . . . . . 7 (𝑥 = (𝑆 + 1) → (𝑃𝑥) = (𝑃↑(𝑆 + 1)))
1514breq1d 5151 . . . . . 6 (𝑥 = (𝑆 + 1) → ((𝑃𝑥) ∥ 𝑁 ↔ (𝑃↑(𝑆 + 1)) ∥ 𝑁))
16 oveq2 7413 . . . . . . . . 9 (𝑛 = 𝑥 → (𝑃𝑛) = (𝑃𝑥))
1716breq1d 5151 . . . . . . . 8 (𝑛 = 𝑥 → ((𝑃𝑛) ∥ 𝑁 ↔ (𝑃𝑥) ∥ 𝑁))
1817cbvrabv 3436 . . . . . . 7 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁} = {𝑥 ∈ ℕ0 ∣ (𝑃𝑥) ∥ 𝑁}
191, 18eqtri 2754 . . . . . 6 𝐴 = {𝑥 ∈ ℕ0 ∣ (𝑃𝑥) ∥ 𝑁}
2015, 19elrab2 3681 . . . . 5 ((𝑆 + 1) ∈ 𝐴 ↔ ((𝑆 + 1) ∈ ℕ0 ∧ (𝑃↑(𝑆 + 1)) ∥ 𝑁))
2120simplbi2 500 . . . 4 ((𝑆 + 1) ∈ ℕ0 → ((𝑃↑(𝑆 + 1)) ∥ 𝑁 → (𝑆 + 1) ∈ 𝐴))
224, 13, 213syl 18 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 1)) ∥ 𝑁 → (𝑆 + 1) ∈ 𝐴))
23 suprzub 12927 . . . . . 6 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥 ∧ (𝑆 + 1) ∈ 𝐴) → (𝑆 + 1) ≤ sup(𝐴, ℝ, < ))
2423, 2breqtrrdi 5183 . . . . 5 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥 ∧ (𝑆 + 1) ∈ 𝐴) → (𝑆 + 1) ≤ 𝑆)
25243expia 1118 . . . 4 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ((𝑆 + 1) ∈ 𝐴 → (𝑆 + 1) ≤ 𝑆))
26253adant2 1128 . . 3 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ((𝑆 + 1) ∈ 𝐴 → (𝑆 + 1) ≤ 𝑆))
2712, 22, 26sylsyld 61 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 1)) ∥ 𝑁 → (𝑆 + 1) ≤ 𝑆))
2811, 27mtod 197 1 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2934  wral 3055  wrex 3064  {crab 3426  wss 3943  c0 4317   class class class wbr 5141  cfv 6537  (class class class)co 7405  supcsup 9437  cr 11111  0cc0 11112  1c1 11113   + caddc 11115   < clt 11252  cle 11253  2c2 12271  0cn0 12476  cz 12562  cuz 12826  cexp 14032  cdvds 16204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12981  df-fl 13763  df-seq 13973  df-exp 14033  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-dvds 16205
This theorem is referenced by:  pcprendvds2  16783  pczndvds  16807
  Copyright terms: Public domain W3C validator