| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pcprendvds | Structured version Visualization version GIF version | ||
| Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| Ref | Expression |
|---|---|
| pclem.1 | ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} |
| pclem.2 | ⊢ 𝑆 = sup(𝐴, ℝ, < ) |
| Ref | Expression |
|---|---|
| pcprendvds | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pclem.1 | . . . . 5 ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} | |
| 2 | pclem.2 | . . . . 5 ⊢ 𝑆 = sup(𝐴, ℝ, < ) | |
| 3 | 1, 2 | pcprecl 16751 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) |
| 4 | 3 | simpld 494 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0) |
| 5 | nn0re 12390 | . . 3 ⊢ (𝑆 ∈ ℕ0 → 𝑆 ∈ ℝ) | |
| 6 | ltp1 11961 | . . . 4 ⊢ (𝑆 ∈ ℝ → 𝑆 < (𝑆 + 1)) | |
| 7 | peano2re 11286 | . . . . 5 ⊢ (𝑆 ∈ ℝ → (𝑆 + 1) ∈ ℝ) | |
| 8 | ltnle 11192 | . . . . 5 ⊢ ((𝑆 ∈ ℝ ∧ (𝑆 + 1) ∈ ℝ) → (𝑆 < (𝑆 + 1) ↔ ¬ (𝑆 + 1) ≤ 𝑆)) | |
| 9 | 7, 8 | mpdan 687 | . . . 4 ⊢ (𝑆 ∈ ℝ → (𝑆 < (𝑆 + 1) ↔ ¬ (𝑆 + 1) ≤ 𝑆)) |
| 10 | 6, 9 | mpbid 232 | . . 3 ⊢ (𝑆 ∈ ℝ → ¬ (𝑆 + 1) ≤ 𝑆) |
| 11 | 4, 5, 10 | 3syl 18 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑆 + 1) ≤ 𝑆) |
| 12 | 1 | pclem 16750 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
| 13 | peano2nn0 12421 | . . . 4 ⊢ (𝑆 ∈ ℕ0 → (𝑆 + 1) ∈ ℕ0) | |
| 14 | oveq2 7354 | . . . . . . 7 ⊢ (𝑥 = (𝑆 + 1) → (𝑃↑𝑥) = (𝑃↑(𝑆 + 1))) | |
| 15 | 14 | breq1d 5101 | . . . . . 6 ⊢ (𝑥 = (𝑆 + 1) → ((𝑃↑𝑥) ∥ 𝑁 ↔ (𝑃↑(𝑆 + 1)) ∥ 𝑁)) |
| 16 | oveq2 7354 | . . . . . . . . 9 ⊢ (𝑛 = 𝑥 → (𝑃↑𝑛) = (𝑃↑𝑥)) | |
| 17 | 16 | breq1d 5101 | . . . . . . . 8 ⊢ (𝑛 = 𝑥 → ((𝑃↑𝑛) ∥ 𝑁 ↔ (𝑃↑𝑥) ∥ 𝑁)) |
| 18 | 17 | cbvrabv 3405 | . . . . . . 7 ⊢ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} = {𝑥 ∈ ℕ0 ∣ (𝑃↑𝑥) ∥ 𝑁} |
| 19 | 1, 18 | eqtri 2754 | . . . . . 6 ⊢ 𝐴 = {𝑥 ∈ ℕ0 ∣ (𝑃↑𝑥) ∥ 𝑁} |
| 20 | 15, 19 | elrab2 3650 | . . . . 5 ⊢ ((𝑆 + 1) ∈ 𝐴 ↔ ((𝑆 + 1) ∈ ℕ0 ∧ (𝑃↑(𝑆 + 1)) ∥ 𝑁)) |
| 21 | 20 | simplbi2 500 | . . . 4 ⊢ ((𝑆 + 1) ∈ ℕ0 → ((𝑃↑(𝑆 + 1)) ∥ 𝑁 → (𝑆 + 1) ∈ 𝐴)) |
| 22 | 4, 13, 21 | 3syl 18 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 1)) ∥ 𝑁 → (𝑆 + 1) ∈ 𝐴)) |
| 23 | suprzub 12837 | . . . . . 6 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ (𝑆 + 1) ∈ 𝐴) → (𝑆 + 1) ≤ sup(𝐴, ℝ, < )) | |
| 24 | 23, 2 | breqtrrdi 5133 | . . . . 5 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ (𝑆 + 1) ∈ 𝐴) → (𝑆 + 1) ≤ 𝑆) |
| 25 | 24 | 3expia 1121 | . . . 4 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ((𝑆 + 1) ∈ 𝐴 → (𝑆 + 1) ≤ 𝑆)) |
| 26 | 25 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ((𝑆 + 1) ∈ 𝐴 → (𝑆 + 1) ≤ 𝑆)) |
| 27 | 12, 22, 26 | sylsyld 61 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 1)) ∥ 𝑁 → (𝑆 + 1) ≤ 𝑆)) |
| 28 | 11, 27 | mtod 198 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 {crab 3395 ⊆ wss 3902 ∅c0 4283 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 supcsup 9324 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 < clt 11146 ≤ cle 11147 2c2 12180 ℕ0cn0 12381 ℤcz 12468 ℤ≥cuz 12732 ↑cexp 13968 ∥ cdvds 16163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fl 13696 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 |
| This theorem is referenced by: pcprendvds2 16753 pczndvds 16777 |
| Copyright terms: Public domain | W3C validator |