|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pcprendvds | Structured version Visualization version GIF version | ||
| Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.) | 
| Ref | Expression | 
|---|---|
| pclem.1 | ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} | 
| pclem.2 | ⊢ 𝑆 = sup(𝐴, ℝ, < ) | 
| Ref | Expression | 
|---|---|
| pcprendvds | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pclem.1 | . . . . 5 ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} | |
| 2 | pclem.2 | . . . . 5 ⊢ 𝑆 = sup(𝐴, ℝ, < ) | |
| 3 | 1, 2 | pcprecl 16878 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) | 
| 4 | 3 | simpld 494 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0) | 
| 5 | nn0re 12537 | . . 3 ⊢ (𝑆 ∈ ℕ0 → 𝑆 ∈ ℝ) | |
| 6 | ltp1 12108 | . . . 4 ⊢ (𝑆 ∈ ℝ → 𝑆 < (𝑆 + 1)) | |
| 7 | peano2re 11435 | . . . . 5 ⊢ (𝑆 ∈ ℝ → (𝑆 + 1) ∈ ℝ) | |
| 8 | ltnle 11341 | . . . . 5 ⊢ ((𝑆 ∈ ℝ ∧ (𝑆 + 1) ∈ ℝ) → (𝑆 < (𝑆 + 1) ↔ ¬ (𝑆 + 1) ≤ 𝑆)) | |
| 9 | 7, 8 | mpdan 687 | . . . 4 ⊢ (𝑆 ∈ ℝ → (𝑆 < (𝑆 + 1) ↔ ¬ (𝑆 + 1) ≤ 𝑆)) | 
| 10 | 6, 9 | mpbid 232 | . . 3 ⊢ (𝑆 ∈ ℝ → ¬ (𝑆 + 1) ≤ 𝑆) | 
| 11 | 4, 5, 10 | 3syl 18 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑆 + 1) ≤ 𝑆) | 
| 12 | 1 | pclem 16877 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) | 
| 13 | peano2nn0 12568 | . . . 4 ⊢ (𝑆 ∈ ℕ0 → (𝑆 + 1) ∈ ℕ0) | |
| 14 | oveq2 7440 | . . . . . . 7 ⊢ (𝑥 = (𝑆 + 1) → (𝑃↑𝑥) = (𝑃↑(𝑆 + 1))) | |
| 15 | 14 | breq1d 5152 | . . . . . 6 ⊢ (𝑥 = (𝑆 + 1) → ((𝑃↑𝑥) ∥ 𝑁 ↔ (𝑃↑(𝑆 + 1)) ∥ 𝑁)) | 
| 16 | oveq2 7440 | . . . . . . . . 9 ⊢ (𝑛 = 𝑥 → (𝑃↑𝑛) = (𝑃↑𝑥)) | |
| 17 | 16 | breq1d 5152 | . . . . . . . 8 ⊢ (𝑛 = 𝑥 → ((𝑃↑𝑛) ∥ 𝑁 ↔ (𝑃↑𝑥) ∥ 𝑁)) | 
| 18 | 17 | cbvrabv 3446 | . . . . . . 7 ⊢ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} = {𝑥 ∈ ℕ0 ∣ (𝑃↑𝑥) ∥ 𝑁} | 
| 19 | 1, 18 | eqtri 2764 | . . . . . 6 ⊢ 𝐴 = {𝑥 ∈ ℕ0 ∣ (𝑃↑𝑥) ∥ 𝑁} | 
| 20 | 15, 19 | elrab2 3694 | . . . . 5 ⊢ ((𝑆 + 1) ∈ 𝐴 ↔ ((𝑆 + 1) ∈ ℕ0 ∧ (𝑃↑(𝑆 + 1)) ∥ 𝑁)) | 
| 21 | 20 | simplbi2 500 | . . . 4 ⊢ ((𝑆 + 1) ∈ ℕ0 → ((𝑃↑(𝑆 + 1)) ∥ 𝑁 → (𝑆 + 1) ∈ 𝐴)) | 
| 22 | 4, 13, 21 | 3syl 18 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 1)) ∥ 𝑁 → (𝑆 + 1) ∈ 𝐴)) | 
| 23 | suprzub 12982 | . . . . . 6 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ (𝑆 + 1) ∈ 𝐴) → (𝑆 + 1) ≤ sup(𝐴, ℝ, < )) | |
| 24 | 23, 2 | breqtrrdi 5184 | . . . . 5 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ (𝑆 + 1) ∈ 𝐴) → (𝑆 + 1) ≤ 𝑆) | 
| 25 | 24 | 3expia 1121 | . . . 4 ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ((𝑆 + 1) ∈ 𝐴 → (𝑆 + 1) ≤ 𝑆)) | 
| 26 | 25 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ((𝑆 + 1) ∈ 𝐴 → (𝑆 + 1) ≤ 𝑆)) | 
| 27 | 12, 22, 26 | sylsyld 61 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 1)) ∥ 𝑁 → (𝑆 + 1) ≤ 𝑆)) | 
| 28 | 11, 27 | mtod 198 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 {crab 3435 ⊆ wss 3950 ∅c0 4332 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 supcsup 9481 ℝcr 11155 0cc0 11156 1c1 11157 + caddc 11159 < clt 11296 ≤ cle 11297 2c2 12322 ℕ0cn0 12528 ℤcz 12615 ℤ≥cuz 12879 ↑cexp 14103 ∥ cdvds 16291 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-sup 9483 df-inf 9484 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-fl 13833 df-seq 14044 df-exp 14104 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-dvds 16292 | 
| This theorem is referenced by: pcprendvds2 16880 pczndvds 16904 | 
| Copyright terms: Public domain | W3C validator |