![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rppwr | Structured version Visualization version GIF version |
Description: If 𝐴 and 𝐵 are relatively prime, then so are 𝐴↑𝑁 and 𝐵↑𝑁. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
rppwr | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1172 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℕ) | |
2 | simpl2 1173 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 ∈ ℕ) | |
3 | simpl3 1174 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝑁 ∈ ℕ) | |
4 | 3 | nnnn0d 11765 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝑁 ∈ ℕ0) |
5 | 2, 4 | nnexpcld 13419 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵↑𝑁) ∈ ℕ) |
6 | 1, 5, 3 | 3jca 1109 | . . 3 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 ∈ ℕ ∧ (𝐵↑𝑁) ∈ ℕ ∧ 𝑁 ∈ ℕ)) |
7 | 1 | nnzd 11897 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℤ) |
8 | 5 | nnzd 11897 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵↑𝑁) ∈ ℤ) |
9 | gcdcom 15720 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵↑𝑁) ∈ ℤ) → (𝐴 gcd (𝐵↑𝑁)) = ((𝐵↑𝑁) gcd 𝐴)) | |
10 | 7, 8, 9 | syl2anc 576 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd (𝐵↑𝑁)) = ((𝐵↑𝑁) gcd 𝐴)) |
11 | 2, 1, 3 | 3jca 1109 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ)) |
12 | nnz 11815 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
13 | 12 | 3ad2ant1 1114 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℤ) |
14 | nnz 11815 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
15 | 14 | 3ad2ant2 1115 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℤ) |
16 | gcdcom 15720 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴)) | |
17 | 13, 15, 16 | syl2anc 576 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴)) |
18 | 17 | eqeq1d 2773 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐴) = 1)) |
19 | 18 | biimpa 469 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵 gcd 𝐴) = 1) |
20 | rplpwr 15761 | . . . . 5 ⊢ ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐵 gcd 𝐴) = 1 → ((𝐵↑𝑁) gcd 𝐴) = 1)) | |
21 | 11, 19, 20 | sylc 65 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐵↑𝑁) gcd 𝐴) = 1) |
22 | 10, 21 | eqtrd 2807 | . . 3 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd (𝐵↑𝑁)) = 1) |
23 | rplpwr 15761 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵↑𝑁) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd (𝐵↑𝑁)) = 1 → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = 1)) | |
24 | 6, 22, 23 | sylc 65 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = 1) |
25 | 24 | ex 405 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 (class class class)co 6974 1c1 10334 ℕcn 11437 ℤcz 11791 ↑cexp 13242 gcd cgcd 15701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-sup 8699 df-inf 8700 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-3 11502 df-n0 11706 df-z 11792 df-uz 12057 df-rp 12203 df-fl 12975 df-mod 13051 df-seq 13183 df-exp 13243 df-cj 14317 df-re 14318 df-im 14319 df-sqrt 14453 df-abs 14454 df-dvds 15466 df-gcd 15702 |
This theorem is referenced by: sqgcd 15763 ostth3 25931 nn0rppwr 38652 |
Copyright terms: Public domain | W3C validator |