![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zorn2lem2 | Structured version Visualization version GIF version |
Description: Lemma for zorn2 10443. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
zorn2lem.3 | ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) |
zorn2lem.4 | ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} |
zorn2lem.5 | ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} |
Ref | Expression |
---|---|
zorn2lem2 | ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zorn2lem.3 | . . . 4 ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) | |
2 | zorn2lem.4 | . . . 4 ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} | |
3 | zorn2lem.5 | . . . 4 ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} | |
4 | 1, 2, 3 | zorn2lem1 10433 | . . 3 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝐹‘𝑥) ∈ 𝐷) |
5 | breq2 5110 | . . . . . 6 ⊢ (𝑧 = (𝐹‘𝑥) → (𝑔𝑅𝑧 ↔ 𝑔𝑅(𝐹‘𝑥))) | |
6 | 5 | ralbidv 3175 | . . . . 5 ⊢ (𝑧 = (𝐹‘𝑥) → (∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥))) |
7 | 6, 3 | elrab2 3649 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ 𝐷 ↔ ((𝐹‘𝑥) ∈ 𝐴 ∧ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥))) |
8 | 7 | simprbi 498 | . . 3 ⊢ ((𝐹‘𝑥) ∈ 𝐷 → ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥)) |
9 | 4, 8 | syl 17 | . 2 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥)) |
10 | 1 | tfr1 8344 | . . . 4 ⊢ 𝐹 Fn On |
11 | onss 7720 | . . . 4 ⊢ (𝑥 ∈ On → 𝑥 ⊆ On) | |
12 | fnfvima 7184 | . . . . 5 ⊢ ((𝐹 Fn On ∧ 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥) → (𝐹‘𝑦) ∈ (𝐹 “ 𝑥)) | |
13 | 12 | 3expia 1122 | . . . 4 ⊢ ((𝐹 Fn On ∧ 𝑥 ⊆ On) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹 “ 𝑥))) |
14 | 10, 11, 13 | sylancr 588 | . . 3 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹 “ 𝑥))) |
15 | 14 | adantr 482 | . 2 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹 “ 𝑥))) |
16 | breq1 5109 | . . 3 ⊢ (𝑔 = (𝐹‘𝑦) → (𝑔𝑅(𝐹‘𝑥) ↔ (𝐹‘𝑦)𝑅(𝐹‘𝑥))) | |
17 | 16 | rspccv 3579 | . 2 ⊢ (∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥) → ((𝐹‘𝑦) ∈ (𝐹 “ 𝑥) → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) |
18 | 9, 15, 17 | sylsyld 61 | 1 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2944 ∀wral 3065 {crab 3408 Vcvv 3446 ⊆ wss 3911 ∅c0 4283 class class class wbr 5106 ↦ cmpt 5189 We wwe 5588 ran crn 5635 “ cima 5637 Oncon0 6318 Fn wfn 6492 ‘cfv 6497 ℩crio 7313 recscrecs 8317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 |
This theorem is referenced by: zorn2lem3 10435 zorn2lem6 10438 |
Copyright terms: Public domain | W3C validator |