| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zorn2lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for zorn2 10435. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| zorn2lem.3 | ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) |
| zorn2lem.4 | ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} |
| zorn2lem.5 | ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} |
| Ref | Expression |
|---|---|
| zorn2lem2 | ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zorn2lem.3 | . . . 4 ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) | |
| 2 | zorn2lem.4 | . . . 4 ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} | |
| 3 | zorn2lem.5 | . . . 4 ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} | |
| 4 | 1, 2, 3 | zorn2lem1 10425 | . . 3 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝐹‘𝑥) ∈ 𝐷) |
| 5 | breq2 5106 | . . . . . 6 ⊢ (𝑧 = (𝐹‘𝑥) → (𝑔𝑅𝑧 ↔ 𝑔𝑅(𝐹‘𝑥))) | |
| 6 | 5 | ralbidv 3156 | . . . . 5 ⊢ (𝑧 = (𝐹‘𝑥) → (∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥))) |
| 7 | 6, 3 | elrab2 3659 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ 𝐷 ↔ ((𝐹‘𝑥) ∈ 𝐴 ∧ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥))) |
| 8 | 7 | simprbi 496 | . . 3 ⊢ ((𝐹‘𝑥) ∈ 𝐷 → ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥)) |
| 9 | 4, 8 | syl 17 | . 2 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥)) |
| 10 | 1 | tfr1 8342 | . . . 4 ⊢ 𝐹 Fn On |
| 11 | onss 7741 | . . . 4 ⊢ (𝑥 ∈ On → 𝑥 ⊆ On) | |
| 12 | fnfvima 7189 | . . . . 5 ⊢ ((𝐹 Fn On ∧ 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥) → (𝐹‘𝑦) ∈ (𝐹 “ 𝑥)) | |
| 13 | 12 | 3expia 1121 | . . . 4 ⊢ ((𝐹 Fn On ∧ 𝑥 ⊆ On) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹 “ 𝑥))) |
| 14 | 10, 11, 13 | sylancr 587 | . . 3 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹 “ 𝑥))) |
| 15 | 14 | adantr 480 | . 2 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹 “ 𝑥))) |
| 16 | breq1 5105 | . . 3 ⊢ (𝑔 = (𝐹‘𝑦) → (𝑔𝑅(𝐹‘𝑥) ↔ (𝐹‘𝑦)𝑅(𝐹‘𝑥))) | |
| 17 | 16 | rspccv 3582 | . 2 ⊢ (∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥) → ((𝐹‘𝑦) ∈ (𝐹 “ 𝑥) → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) |
| 18 | 9, 15, 17 | sylsyld 61 | 1 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3402 Vcvv 3444 ⊆ wss 3911 ∅c0 4292 class class class wbr 5102 ↦ cmpt 5183 We wwe 5583 ran crn 5632 “ cima 5634 Oncon0 6320 Fn wfn 6494 ‘cfv 6499 ℩crio 7325 recscrecs 8316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 |
| This theorem is referenced by: zorn2lem3 10427 zorn2lem6 10430 |
| Copyright terms: Public domain | W3C validator |