MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem2 Structured version   Visualization version   GIF version

Theorem zorn2lem2 10535
Description: Lemma for zorn2 10544. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝑦𝑥 → (𝐹𝑦)𝑅(𝐹𝑥)))
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣,𝑦   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑦,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)

Proof of Theorem zorn2lem2
StepHypRef Expression
1 zorn2lem.3 . . . 4 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
2 zorn2lem.4 . . . 4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
3 zorn2lem.5 . . . 4 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
41, 2, 3zorn2lem1 10534 . . 3 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐷)
5 breq2 5152 . . . . . 6 (𝑧 = (𝐹𝑥) → (𝑔𝑅𝑧𝑔𝑅(𝐹𝑥)))
65ralbidv 3176 . . . . 5 (𝑧 = (𝐹𝑥) → (∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅(𝐹𝑥)))
76, 3elrab2 3698 . . . 4 ((𝐹𝑥) ∈ 𝐷 ↔ ((𝐹𝑥) ∈ 𝐴 ∧ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅(𝐹𝑥)))
87simprbi 496 . . 3 ((𝐹𝑥) ∈ 𝐷 → ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅(𝐹𝑥))
94, 8syl 17 . 2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅(𝐹𝑥))
101tfr1 8436 . . . 4 𝐹 Fn On
11 onss 7804 . . . 4 (𝑥 ∈ On → 𝑥 ⊆ On)
12 fnfvima 7253 . . . . 5 ((𝐹 Fn On ∧ 𝑥 ⊆ On ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (𝐹𝑥))
13123expia 1120 . . . 4 ((𝐹 Fn On ∧ 𝑥 ⊆ On) → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
1410, 11, 13sylancr 587 . . 3 (𝑥 ∈ On → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
1514adantr 480 . 2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
16 breq1 5151 . . 3 (𝑔 = (𝐹𝑦) → (𝑔𝑅(𝐹𝑥) ↔ (𝐹𝑦)𝑅(𝐹𝑥)))
1716rspccv 3619 . 2 (∀𝑔 ∈ (𝐹𝑥)𝑔𝑅(𝐹𝑥) → ((𝐹𝑦) ∈ (𝐹𝑥) → (𝐹𝑦)𝑅(𝐹𝑥)))
189, 15, 17sylsyld 61 1 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝑦𝑥 → (𝐹𝑦)𝑅(𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  {crab 3433  Vcvv 3478  wss 3963  c0 4339   class class class wbr 5148  cmpt 5231   We wwe 5640  ran crn 5690  cima 5692  Oncon0 6386   Fn wfn 6558  cfv 6563  crio 7387  recscrecs 8409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410
This theorem is referenced by:  zorn2lem3  10536  zorn2lem6  10539
  Copyright terms: Public domain W3C validator