MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem2 Structured version   Visualization version   GIF version

Theorem zorn2lem2 10494
Description: Lemma for zorn2 10503. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝑦𝑥 → (𝐹𝑦)𝑅(𝐹𝑥)))
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣,𝑦   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑦,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)

Proof of Theorem zorn2lem2
StepHypRef Expression
1 zorn2lem.3 . . . 4 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
2 zorn2lem.4 . . . 4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
3 zorn2lem.5 . . . 4 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
41, 2, 3zorn2lem1 10493 . . 3 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐷)
5 breq2 5152 . . . . . 6 (𝑧 = (𝐹𝑥) → (𝑔𝑅𝑧𝑔𝑅(𝐹𝑥)))
65ralbidv 3177 . . . . 5 (𝑧 = (𝐹𝑥) → (∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅(𝐹𝑥)))
76, 3elrab2 3686 . . . 4 ((𝐹𝑥) ∈ 𝐷 ↔ ((𝐹𝑥) ∈ 𝐴 ∧ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅(𝐹𝑥)))
87simprbi 497 . . 3 ((𝐹𝑥) ∈ 𝐷 → ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅(𝐹𝑥))
94, 8syl 17 . 2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅(𝐹𝑥))
101tfr1 8399 . . . 4 𝐹 Fn On
11 onss 7774 . . . 4 (𝑥 ∈ On → 𝑥 ⊆ On)
12 fnfvima 7237 . . . . 5 ((𝐹 Fn On ∧ 𝑥 ⊆ On ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (𝐹𝑥))
13123expia 1121 . . . 4 ((𝐹 Fn On ∧ 𝑥 ⊆ On) → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
1410, 11, 13sylancr 587 . . 3 (𝑥 ∈ On → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
1514adantr 481 . 2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
16 breq1 5151 . . 3 (𝑔 = (𝐹𝑦) → (𝑔𝑅(𝐹𝑥) ↔ (𝐹𝑦)𝑅(𝐹𝑥)))
1716rspccv 3609 . 2 (∀𝑔 ∈ (𝐹𝑥)𝑔𝑅(𝐹𝑥) → ((𝐹𝑦) ∈ (𝐹𝑥) → (𝐹𝑦)𝑅(𝐹𝑥)))
189, 15, 17sylsyld 61 1 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝑦𝑥 → (𝐹𝑦)𝑅(𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  wral 3061  {crab 3432  Vcvv 3474  wss 3948  c0 4322   class class class wbr 5148  cmpt 5231   We wwe 5630  ran crn 5677  cima 5679  Oncon0 6364   Fn wfn 6538  cfv 6543  crio 7366  recscrecs 8372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373
This theorem is referenced by:  zorn2lem3  10495  zorn2lem6  10498
  Copyright terms: Public domain W3C validator