Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zorn2lem2 | Structured version Visualization version GIF version |
Description: Lemma for zorn2 9971. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
zorn2lem.3 | ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) |
zorn2lem.4 | ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} |
zorn2lem.5 | ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} |
Ref | Expression |
---|---|
zorn2lem2 | ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zorn2lem.3 | . . . 4 ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) | |
2 | zorn2lem.4 | . . . 4 ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} | |
3 | zorn2lem.5 | . . . 4 ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} | |
4 | 1, 2, 3 | zorn2lem1 9961 | . . 3 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝐹‘𝑥) ∈ 𝐷) |
5 | breq2 5039 | . . . . . 6 ⊢ (𝑧 = (𝐹‘𝑥) → (𝑔𝑅𝑧 ↔ 𝑔𝑅(𝐹‘𝑥))) | |
6 | 5 | ralbidv 3126 | . . . . 5 ⊢ (𝑧 = (𝐹‘𝑥) → (∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥))) |
7 | 6, 3 | elrab2 3607 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ 𝐷 ↔ ((𝐹‘𝑥) ∈ 𝐴 ∧ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥))) |
8 | 7 | simprbi 500 | . . 3 ⊢ ((𝐹‘𝑥) ∈ 𝐷 → ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥)) |
9 | 4, 8 | syl 17 | . 2 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥)) |
10 | 1 | tfr1 8048 | . . . 4 ⊢ 𝐹 Fn On |
11 | onss 7509 | . . . 4 ⊢ (𝑥 ∈ On → 𝑥 ⊆ On) | |
12 | fnfvima 6992 | . . . . 5 ⊢ ((𝐹 Fn On ∧ 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥) → (𝐹‘𝑦) ∈ (𝐹 “ 𝑥)) | |
13 | 12 | 3expia 1118 | . . . 4 ⊢ ((𝐹 Fn On ∧ 𝑥 ⊆ On) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹 “ 𝑥))) |
14 | 10, 11, 13 | sylancr 590 | . . 3 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹 “ 𝑥))) |
15 | 14 | adantr 484 | . 2 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹 “ 𝑥))) |
16 | breq1 5038 | . . 3 ⊢ (𝑔 = (𝐹‘𝑦) → (𝑔𝑅(𝐹‘𝑥) ↔ (𝐹‘𝑦)𝑅(𝐹‘𝑥))) | |
17 | 16 | rspccv 3540 | . 2 ⊢ (∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥) → ((𝐹‘𝑦) ∈ (𝐹 “ 𝑥) → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) |
18 | 9, 15, 17 | sylsyld 61 | 1 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 {crab 3074 Vcvv 3409 ⊆ wss 3860 ∅c0 4227 class class class wbr 5035 ↦ cmpt 5115 We wwe 5485 ran crn 5528 “ cima 5530 Oncon0 6173 Fn wfn 6334 ‘cfv 6339 ℩crio 7112 recscrecs 8022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-wrecs 7962 df-recs 8023 |
This theorem is referenced by: zorn2lem3 9963 zorn2lem6 9966 |
Copyright terms: Public domain | W3C validator |