MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem2 Structured version   Visualization version   GIF version

Theorem zorn2lem2 10426
Description: Lemma for zorn2 10435. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝑦𝑥 → (𝐹𝑦)𝑅(𝐹𝑥)))
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣,𝑦   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑦,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)

Proof of Theorem zorn2lem2
StepHypRef Expression
1 zorn2lem.3 . . . 4 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
2 zorn2lem.4 . . . 4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
3 zorn2lem.5 . . . 4 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
41, 2, 3zorn2lem1 10425 . . 3 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐷)
5 breq2 5106 . . . . . 6 (𝑧 = (𝐹𝑥) → (𝑔𝑅𝑧𝑔𝑅(𝐹𝑥)))
65ralbidv 3156 . . . . 5 (𝑧 = (𝐹𝑥) → (∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅(𝐹𝑥)))
76, 3elrab2 3659 . . . 4 ((𝐹𝑥) ∈ 𝐷 ↔ ((𝐹𝑥) ∈ 𝐴 ∧ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅(𝐹𝑥)))
87simprbi 496 . . 3 ((𝐹𝑥) ∈ 𝐷 → ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅(𝐹𝑥))
94, 8syl 17 . 2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅(𝐹𝑥))
101tfr1 8342 . . . 4 𝐹 Fn On
11 onss 7741 . . . 4 (𝑥 ∈ On → 𝑥 ⊆ On)
12 fnfvima 7189 . . . . 5 ((𝐹 Fn On ∧ 𝑥 ⊆ On ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (𝐹𝑥))
13123expia 1121 . . . 4 ((𝐹 Fn On ∧ 𝑥 ⊆ On) → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
1410, 11, 13sylancr 587 . . 3 (𝑥 ∈ On → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
1514adantr 480 . 2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
16 breq1 5105 . . 3 (𝑔 = (𝐹𝑦) → (𝑔𝑅(𝐹𝑥) ↔ (𝐹𝑦)𝑅(𝐹𝑥)))
1716rspccv 3582 . 2 (∀𝑔 ∈ (𝐹𝑥)𝑔𝑅(𝐹𝑥) → ((𝐹𝑦) ∈ (𝐹𝑥) → (𝐹𝑦)𝑅(𝐹𝑥)))
189, 15, 17sylsyld 61 1 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝑦𝑥 → (𝐹𝑦)𝑅(𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3402  Vcvv 3444  wss 3911  c0 4292   class class class wbr 5102  cmpt 5183   We wwe 5583  ran crn 5632  cima 5634  Oncon0 6320   Fn wfn 6494  cfv 6499  crio 7325  recscrecs 8316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317
This theorem is referenced by:  zorn2lem3  10427  zorn2lem6  10430
  Copyright terms: Public domain W3C validator