![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zorn2lem2 | Structured version Visualization version GIF version |
Description: Lemma for zorn2 10544. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
zorn2lem.3 | ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) |
zorn2lem.4 | ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} |
zorn2lem.5 | ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} |
Ref | Expression |
---|---|
zorn2lem2 | ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zorn2lem.3 | . . . 4 ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) | |
2 | zorn2lem.4 | . . . 4 ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} | |
3 | zorn2lem.5 | . . . 4 ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} | |
4 | 1, 2, 3 | zorn2lem1 10534 | . . 3 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝐹‘𝑥) ∈ 𝐷) |
5 | breq2 5152 | . . . . . 6 ⊢ (𝑧 = (𝐹‘𝑥) → (𝑔𝑅𝑧 ↔ 𝑔𝑅(𝐹‘𝑥))) | |
6 | 5 | ralbidv 3176 | . . . . 5 ⊢ (𝑧 = (𝐹‘𝑥) → (∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥))) |
7 | 6, 3 | elrab2 3698 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ 𝐷 ↔ ((𝐹‘𝑥) ∈ 𝐴 ∧ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥))) |
8 | 7 | simprbi 496 | . . 3 ⊢ ((𝐹‘𝑥) ∈ 𝐷 → ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥)) |
9 | 4, 8 | syl 17 | . 2 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥)) |
10 | 1 | tfr1 8436 | . . . 4 ⊢ 𝐹 Fn On |
11 | onss 7804 | . . . 4 ⊢ (𝑥 ∈ On → 𝑥 ⊆ On) | |
12 | fnfvima 7253 | . . . . 5 ⊢ ((𝐹 Fn On ∧ 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥) → (𝐹‘𝑦) ∈ (𝐹 “ 𝑥)) | |
13 | 12 | 3expia 1120 | . . . 4 ⊢ ((𝐹 Fn On ∧ 𝑥 ⊆ On) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹 “ 𝑥))) |
14 | 10, 11, 13 | sylancr 587 | . . 3 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹 “ 𝑥))) |
15 | 14 | adantr 480 | . 2 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹 “ 𝑥))) |
16 | breq1 5151 | . . 3 ⊢ (𝑔 = (𝐹‘𝑦) → (𝑔𝑅(𝐹‘𝑥) ↔ (𝐹‘𝑦)𝑅(𝐹‘𝑥))) | |
17 | 16 | rspccv 3619 | . 2 ⊢ (∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥) → ((𝐹‘𝑦) ∈ (𝐹 “ 𝑥) → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) |
18 | 9, 15, 17 | sylsyld 61 | 1 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 {crab 3433 Vcvv 3478 ⊆ wss 3963 ∅c0 4339 class class class wbr 5148 ↦ cmpt 5231 We wwe 5640 ran crn 5690 “ cima 5692 Oncon0 6386 Fn wfn 6558 ‘cfv 6563 ℩crio 7387 recscrecs 8409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 |
This theorem is referenced by: zorn2lem3 10536 zorn2lem6 10539 |
Copyright terms: Public domain | W3C validator |