MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem2 Structured version   Visualization version   GIF version

Theorem zorn2lem2 9962
Description: Lemma for zorn2 9971. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝑦𝑥 → (𝐹𝑦)𝑅(𝐹𝑥)))
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣,𝑦   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑦,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)

Proof of Theorem zorn2lem2
StepHypRef Expression
1 zorn2lem.3 . . . 4 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
2 zorn2lem.4 . . . 4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
3 zorn2lem.5 . . . 4 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
41, 2, 3zorn2lem1 9961 . . 3 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐷)
5 breq2 5039 . . . . . 6 (𝑧 = (𝐹𝑥) → (𝑔𝑅𝑧𝑔𝑅(𝐹𝑥)))
65ralbidv 3126 . . . . 5 (𝑧 = (𝐹𝑥) → (∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅(𝐹𝑥)))
76, 3elrab2 3607 . . . 4 ((𝐹𝑥) ∈ 𝐷 ↔ ((𝐹𝑥) ∈ 𝐴 ∧ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅(𝐹𝑥)))
87simprbi 500 . . 3 ((𝐹𝑥) ∈ 𝐷 → ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅(𝐹𝑥))
94, 8syl 17 . 2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅(𝐹𝑥))
101tfr1 8048 . . . 4 𝐹 Fn On
11 onss 7509 . . . 4 (𝑥 ∈ On → 𝑥 ⊆ On)
12 fnfvima 6992 . . . . 5 ((𝐹 Fn On ∧ 𝑥 ⊆ On ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (𝐹𝑥))
13123expia 1118 . . . 4 ((𝐹 Fn On ∧ 𝑥 ⊆ On) → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
1410, 11, 13sylancr 590 . . 3 (𝑥 ∈ On → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
1514adantr 484 . 2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
16 breq1 5038 . . 3 (𝑔 = (𝐹𝑦) → (𝑔𝑅(𝐹𝑥) ↔ (𝐹𝑦)𝑅(𝐹𝑥)))
1716rspccv 3540 . 2 (∀𝑔 ∈ (𝐹𝑥)𝑔𝑅(𝐹𝑥) → ((𝐹𝑦) ∈ (𝐹𝑥) → (𝐹𝑦)𝑅(𝐹𝑥)))
189, 15, 17sylsyld 61 1 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝑦𝑥 → (𝐹𝑦)𝑅(𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2951  wral 3070  {crab 3074  Vcvv 3409  wss 3860  c0 4227   class class class wbr 5035  cmpt 5115   We wwe 5485  ran crn 5528  cima 5530  Oncon0 6173   Fn wfn 6334  cfv 6339  crio 7112  recscrecs 8022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-wrecs 7962  df-recs 8023
This theorem is referenced by:  zorn2lem3  9963  zorn2lem6  9966
  Copyright terms: Public domain W3C validator