![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zorn2lem2 | Structured version Visualization version GIF version |
Description: Lemma for zorn2 10496. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
zorn2lem.3 | ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) |
zorn2lem.4 | ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} |
zorn2lem.5 | ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} |
Ref | Expression |
---|---|
zorn2lem2 | ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zorn2lem.3 | . . . 4 ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) | |
2 | zorn2lem.4 | . . . 4 ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} | |
3 | zorn2lem.5 | . . . 4 ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} | |
4 | 1, 2, 3 | zorn2lem1 10486 | . . 3 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝐹‘𝑥) ∈ 𝐷) |
5 | breq2 5142 | . . . . . 6 ⊢ (𝑧 = (𝐹‘𝑥) → (𝑔𝑅𝑧 ↔ 𝑔𝑅(𝐹‘𝑥))) | |
6 | 5 | ralbidv 3169 | . . . . 5 ⊢ (𝑧 = (𝐹‘𝑥) → (∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥))) |
7 | 6, 3 | elrab2 3678 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ 𝐷 ↔ ((𝐹‘𝑥) ∈ 𝐴 ∧ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥))) |
8 | 7 | simprbi 496 | . . 3 ⊢ ((𝐹‘𝑥) ∈ 𝐷 → ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥)) |
9 | 4, 8 | syl 17 | . 2 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥)) |
10 | 1 | tfr1 8392 | . . . 4 ⊢ 𝐹 Fn On |
11 | onss 7765 | . . . 4 ⊢ (𝑥 ∈ On → 𝑥 ⊆ On) | |
12 | fnfvima 7226 | . . . . 5 ⊢ ((𝐹 Fn On ∧ 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥) → (𝐹‘𝑦) ∈ (𝐹 “ 𝑥)) | |
13 | 12 | 3expia 1118 | . . . 4 ⊢ ((𝐹 Fn On ∧ 𝑥 ⊆ On) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹 “ 𝑥))) |
14 | 10, 11, 13 | sylancr 586 | . . 3 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹 “ 𝑥))) |
15 | 14 | adantr 480 | . 2 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦) ∈ (𝐹 “ 𝑥))) |
16 | breq1 5141 | . . 3 ⊢ (𝑔 = (𝐹‘𝑦) → (𝑔𝑅(𝐹‘𝑥) ↔ (𝐹‘𝑦)𝑅(𝐹‘𝑥))) | |
17 | 16 | rspccv 3601 | . 2 ⊢ (∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅(𝐹‘𝑥) → ((𝐹‘𝑦) ∈ (𝐹 “ 𝑥) → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) |
18 | 9, 15, 17 | sylsyld 61 | 1 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∀wral 3053 {crab 3424 Vcvv 3466 ⊆ wss 3940 ∅c0 4314 class class class wbr 5138 ↦ cmpt 5221 We wwe 5620 ran crn 5667 “ cima 5669 Oncon0 6354 Fn wfn 6528 ‘cfv 6533 ℩crio 7356 recscrecs 8365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 |
This theorem is referenced by: zorn2lem3 10488 zorn2lem6 10491 |
Copyright terms: Public domain | W3C validator |