MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcfnei Structured version   Visualization version   GIF version

Theorem fcfnei 22640
Description: The property of being a cluster point of a function in terms of neighborhoods. (Contributed by Jeff Hankins, 26-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
fcfnei ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅)))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑠,𝐽   𝑛,𝐿,𝑠   𝑛,𝐹,𝑠   𝑛,𝑋,𝑠   𝑛,𝑌,𝑠
Allowed substitution hint:   𝐴(𝑠)

Proof of Theorem fcfnei
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 isfcf 22639 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))))
2 simpll1 1209 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐽 ∈ (TopOn‘𝑋))
3 topontop 21518 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
42, 3syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐽 ∈ Top)
5 simpr 488 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛 ∈ ((nei‘𝐽)‘{𝐴}))
6 eqid 2798 . . . . . . . . 9 𝐽 = 𝐽
76neii1 21711 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛 𝐽)
84, 5, 7syl2anc 587 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛 𝐽)
96ntrss2 21662 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑛 𝐽) → ((int‘𝐽)‘𝑛) ⊆ 𝑛)
104, 8, 9syl2anc 587 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → ((int‘𝐽)‘𝑛) ⊆ 𝑛)
11 simplr 768 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴𝑋)
12 toponuni 21519 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
132, 12syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑋 = 𝐽)
1411, 13eleqtrd 2892 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 𝐽)
1514snssd 4702 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → {𝐴} ⊆ 𝐽)
166neiint 21709 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑛 𝐽) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑛)))
174, 15, 8, 16syl3anc 1368 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑛)))
185, 17mpbid 235 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → {𝐴} ⊆ ((int‘𝐽)‘𝑛))
19 snssg 4678 . . . . . . . . 9 (𝐴𝑋 → (𝐴 ∈ ((int‘𝐽)‘𝑛) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑛)))
2011, 19syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (𝐴 ∈ ((int‘𝐽)‘𝑛) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑛)))
2118, 20mpbird 260 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 ∈ ((int‘𝐽)‘𝑛))
226ntropn 21654 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑛 𝐽) → ((int‘𝐽)‘𝑛) ∈ 𝐽)
234, 8, 22syl2anc 587 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → ((int‘𝐽)‘𝑛) ∈ 𝐽)
24 eleq2 2878 . . . . . . . . . 10 (𝑜 = ((int‘𝐽)‘𝑛) → (𝐴𝑜𝐴 ∈ ((int‘𝐽)‘𝑛)))
25 ineq1 4131 . . . . . . . . . . . 12 (𝑜 = ((int‘𝐽)‘𝑛) → (𝑜 ∩ (𝐹𝑠)) = (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)))
2625neeq1d 3046 . . . . . . . . . . 11 (𝑜 = ((int‘𝐽)‘𝑛) → ((𝑜 ∩ (𝐹𝑠)) ≠ ∅ ↔ (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅))
2726ralbidv 3162 . . . . . . . . . 10 (𝑜 = ((int‘𝐽)‘𝑛) → (∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅ ↔ ∀𝑠𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅))
2824, 27imbi12d 348 . . . . . . . . 9 (𝑜 = ((int‘𝐽)‘𝑛) → ((𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) ↔ (𝐴 ∈ ((int‘𝐽)‘𝑛) → ∀𝑠𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅)))
2928rspcv 3566 . . . . . . . 8 (((int‘𝐽)‘𝑛) ∈ 𝐽 → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → (𝐴 ∈ ((int‘𝐽)‘𝑛) → ∀𝑠𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅)))
3023, 29syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → (𝐴 ∈ ((int‘𝐽)‘𝑛) → ∀𝑠𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅)))
3121, 30mpid 44 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → ∀𝑠𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅))
32 ssrin 4160 . . . . . . . 8 (((int‘𝐽)‘𝑛) ⊆ 𝑛 → (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ⊆ (𝑛 ∩ (𝐹𝑠)))
33 ssn0 4308 . . . . . . . . 9 (((((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ⊆ (𝑛 ∩ (𝐹𝑠)) ∧ (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅) → (𝑛 ∩ (𝐹𝑠)) ≠ ∅)
3433ex 416 . . . . . . . 8 ((((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ⊆ (𝑛 ∩ (𝐹𝑠)) → ((((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅ → (𝑛 ∩ (𝐹𝑠)) ≠ ∅))
3532, 34syl 17 . . . . . . 7 (((int‘𝐽)‘𝑛) ⊆ 𝑛 → ((((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅ → (𝑛 ∩ (𝐹𝑠)) ≠ ∅))
3635ralimdv 3145 . . . . . 6 (((int‘𝐽)‘𝑛) ⊆ 𝑛 → (∀𝑠𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅ → ∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅))
3710, 31, 36sylsyld 61 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → ∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅))
3837ralrimdva 3154 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅))
39 simpl1 1188 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
4039, 3syl 17 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
41 opnneip 21724 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑜𝐽𝐴𝑜) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴}))
42413expb 1117 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑜𝐽𝐴𝑜)) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴}))
4340, 42sylan 583 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴}))
44 ineq1 4131 . . . . . . . . . . 11 (𝑛 = 𝑜 → (𝑛 ∩ (𝐹𝑠)) = (𝑜 ∩ (𝐹𝑠)))
4544neeq1d 3046 . . . . . . . . . 10 (𝑛 = 𝑜 → ((𝑛 ∩ (𝐹𝑠)) ≠ ∅ ↔ (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
4645ralbidv 3162 . . . . . . . . 9 (𝑛 = 𝑜 → (∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ ↔ ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
4746rspcv 3566 . . . . . . . 8 (𝑜 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
4843, 47syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
4948expr 460 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑜𝐽) → (𝐴𝑜 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅)))
5049com23 86 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑜𝐽) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅)))
5150ralrimdva 3154 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅)))
5238, 51impbid 215 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅))
5352pm5.32da 582 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅)) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅)))
541, 53bitrd 282 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  cin 3880  wss 3881  c0 4243  {csn 4525   cuni 4800  cima 5522  wf 6320  cfv 6324  (class class class)co 7135  Topctop 21498  TopOnctopon 21515  intcnt 21622  neicnei 21702  Filcfil 22450   fClusf cfcf 22542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391  df-fbas 20088  df-fg 20089  df-top 21499  df-topon 21516  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-fil 22451  df-fm 22543  df-fcls 22546  df-fcf 22547
This theorem is referenced by:  fcfneii  22642
  Copyright terms: Public domain W3C validator