MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcfnei Structured version   Visualization version   GIF version

Theorem fcfnei 23938
Description: The property of being a cluster point of a function in terms of neighborhoods. (Contributed by Jeff Hankins, 26-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
fcfnei ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅)))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑠,𝐽   𝑛,𝐿,𝑠   𝑛,𝐹,𝑠   𝑛,𝑋,𝑠   𝑛,𝑌,𝑠
Allowed substitution hint:   𝐴(𝑠)

Proof of Theorem fcfnei
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 isfcf 23937 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))))
2 simpll1 1213 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐽 ∈ (TopOn‘𝑋))
3 topontop 22816 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
42, 3syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐽 ∈ Top)
5 simpr 484 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛 ∈ ((nei‘𝐽)‘{𝐴}))
6 eqid 2729 . . . . . . . . 9 𝐽 = 𝐽
76neii1 23009 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛 𝐽)
84, 5, 7syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛 𝐽)
96ntrss2 22960 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑛 𝐽) → ((int‘𝐽)‘𝑛) ⊆ 𝑛)
104, 8, 9syl2anc 584 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → ((int‘𝐽)‘𝑛) ⊆ 𝑛)
11 simplr 768 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴𝑋)
12 toponuni 22817 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
132, 12syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑋 = 𝐽)
1411, 13eleqtrd 2830 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 𝐽)
1514snssd 4763 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → {𝐴} ⊆ 𝐽)
166neiint 23007 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑛 𝐽) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑛)))
174, 15, 8, 16syl3anc 1373 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑛)))
185, 17mpbid 232 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → {𝐴} ⊆ ((int‘𝐽)‘𝑛))
19 snssg 4737 . . . . . . . . 9 (𝐴𝑋 → (𝐴 ∈ ((int‘𝐽)‘𝑛) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑛)))
2011, 19syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (𝐴 ∈ ((int‘𝐽)‘𝑛) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑛)))
2118, 20mpbird 257 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 ∈ ((int‘𝐽)‘𝑛))
226ntropn 22952 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑛 𝐽) → ((int‘𝐽)‘𝑛) ∈ 𝐽)
234, 8, 22syl2anc 584 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → ((int‘𝐽)‘𝑛) ∈ 𝐽)
24 eleq2 2817 . . . . . . . . . 10 (𝑜 = ((int‘𝐽)‘𝑛) → (𝐴𝑜𝐴 ∈ ((int‘𝐽)‘𝑛)))
25 ineq1 4166 . . . . . . . . . . . 12 (𝑜 = ((int‘𝐽)‘𝑛) → (𝑜 ∩ (𝐹𝑠)) = (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)))
2625neeq1d 2984 . . . . . . . . . . 11 (𝑜 = ((int‘𝐽)‘𝑛) → ((𝑜 ∩ (𝐹𝑠)) ≠ ∅ ↔ (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅))
2726ralbidv 3152 . . . . . . . . . 10 (𝑜 = ((int‘𝐽)‘𝑛) → (∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅ ↔ ∀𝑠𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅))
2824, 27imbi12d 344 . . . . . . . . 9 (𝑜 = ((int‘𝐽)‘𝑛) → ((𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) ↔ (𝐴 ∈ ((int‘𝐽)‘𝑛) → ∀𝑠𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅)))
2928rspcv 3575 . . . . . . . 8 (((int‘𝐽)‘𝑛) ∈ 𝐽 → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → (𝐴 ∈ ((int‘𝐽)‘𝑛) → ∀𝑠𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅)))
3023, 29syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → (𝐴 ∈ ((int‘𝐽)‘𝑛) → ∀𝑠𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅)))
3121, 30mpid 44 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → ∀𝑠𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅))
32 ssrin 4195 . . . . . . . 8 (((int‘𝐽)‘𝑛) ⊆ 𝑛 → (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ⊆ (𝑛 ∩ (𝐹𝑠)))
33 ssn0 4357 . . . . . . . . 9 (((((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ⊆ (𝑛 ∩ (𝐹𝑠)) ∧ (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅) → (𝑛 ∩ (𝐹𝑠)) ≠ ∅)
3433ex 412 . . . . . . . 8 ((((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ⊆ (𝑛 ∩ (𝐹𝑠)) → ((((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅ → (𝑛 ∩ (𝐹𝑠)) ≠ ∅))
3532, 34syl 17 . . . . . . 7 (((int‘𝐽)‘𝑛) ⊆ 𝑛 → ((((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅ → (𝑛 ∩ (𝐹𝑠)) ≠ ∅))
3635ralimdv 3143 . . . . . 6 (((int‘𝐽)‘𝑛) ⊆ 𝑛 → (∀𝑠𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅ → ∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅))
3710, 31, 36sylsyld 61 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → ∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅))
3837ralrimdva 3129 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅))
39 simpl1 1192 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
4039, 3syl 17 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
41 opnneip 23022 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑜𝐽𝐴𝑜) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴}))
42413expb 1120 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑜𝐽𝐴𝑜)) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴}))
4340, 42sylan 580 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴}))
44 ineq1 4166 . . . . . . . . . . 11 (𝑛 = 𝑜 → (𝑛 ∩ (𝐹𝑠)) = (𝑜 ∩ (𝐹𝑠)))
4544neeq1d 2984 . . . . . . . . . 10 (𝑛 = 𝑜 → ((𝑛 ∩ (𝐹𝑠)) ≠ ∅ ↔ (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
4645ralbidv 3152 . . . . . . . . 9 (𝑛 = 𝑜 → (∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ ↔ ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
4746rspcv 3575 . . . . . . . 8 (𝑜 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
4843, 47syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
4948expr 456 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑜𝐽) → (𝐴𝑜 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅)))
5049com23 86 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑜𝐽) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅)))
5150ralrimdva 3129 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅)))
5238, 51impbid 212 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅))
5352pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅)) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅)))
541, 53bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  cin 3904  wss 3905  c0 4286  {csn 4579   cuni 4861  cima 5626  wf 6482  cfv 6486  (class class class)co 7353  Topctop 22796  TopOnctopon 22813  intcnt 22920  neicnei 23000  Filcfil 23748   fClusf cfcf 23840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-fbas 21276  df-fg 21277  df-top 22797  df-topon 22814  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-fil 23749  df-fm 23841  df-fcls 23844  df-fcf 23845
This theorem is referenced by:  fcfneii  23940
  Copyright terms: Public domain W3C validator