Step | Hyp | Ref
| Expression |
1 | | isfcf 23093 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅)))) |
2 | | simpll1 1210 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐽 ∈ (TopOn‘𝑋)) |
3 | | topontop 21970 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
4 | 2, 3 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐽 ∈ Top) |
5 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) |
6 | | eqid 2738 |
. . . . . . . . 9
⊢ ∪ 𝐽 =
∪ 𝐽 |
7 | 6 | neii1 22165 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛 ⊆ ∪ 𝐽) |
8 | 4, 5, 7 | syl2anc 583 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛 ⊆ ∪ 𝐽) |
9 | 6 | ntrss2 22116 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑛 ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘𝑛) ⊆ 𝑛) |
10 | 4, 8, 9 | syl2anc 583 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → ((int‘𝐽)‘𝑛) ⊆ 𝑛) |
11 | | simplr 765 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 ∈ 𝑋) |
12 | | toponuni 21971 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
13 | 2, 12 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑋 = ∪ 𝐽) |
14 | 11, 13 | eleqtrd 2841 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 ∈ ∪ 𝐽) |
15 | 14 | snssd 4739 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → {𝐴} ⊆ ∪ 𝐽) |
16 | 6 | neiint 22163 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ {𝐴} ⊆ ∪ 𝐽
∧ 𝑛 ⊆ ∪ 𝐽)
→ (𝑛 ∈
((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑛))) |
17 | 4, 15, 8, 16 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑛))) |
18 | 5, 17 | mpbid 231 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → {𝐴} ⊆ ((int‘𝐽)‘𝑛)) |
19 | | snssg 4715 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ ((int‘𝐽)‘𝑛) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑛))) |
20 | 11, 19 | syl 17 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (𝐴 ∈ ((int‘𝐽)‘𝑛) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑛))) |
21 | 18, 20 | mpbird 256 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 ∈ ((int‘𝐽)‘𝑛)) |
22 | 6 | ntropn 22108 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑛 ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘𝑛) ∈ 𝐽) |
23 | 4, 8, 22 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → ((int‘𝐽)‘𝑛) ∈ 𝐽) |
24 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (𝑜 = ((int‘𝐽)‘𝑛) → (𝐴 ∈ 𝑜 ↔ 𝐴 ∈ ((int‘𝐽)‘𝑛))) |
25 | | ineq1 4136 |
. . . . . . . . . . . 12
⊢ (𝑜 = ((int‘𝐽)‘𝑛) → (𝑜 ∩ (𝐹 “ 𝑠)) = (((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠))) |
26 | 25 | neeq1d 3002 |
. . . . . . . . . . 11
⊢ (𝑜 = ((int‘𝐽)‘𝑛) → ((𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅ ↔ (((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
27 | 26 | ralbidv 3120 |
. . . . . . . . . 10
⊢ (𝑜 = ((int‘𝐽)‘𝑛) → (∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅ ↔ ∀𝑠 ∈ 𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
28 | 24, 27 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑜 = ((int‘𝐽)‘𝑛) → ((𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅) ↔ (𝐴 ∈ ((int‘𝐽)‘𝑛) → ∀𝑠 ∈ 𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ≠ ∅))) |
29 | 28 | rspcv 3547 |
. . . . . . . 8
⊢
(((int‘𝐽)‘𝑛) ∈ 𝐽 → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅) → (𝐴 ∈ ((int‘𝐽)‘𝑛) → ∀𝑠 ∈ 𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ≠ ∅))) |
30 | 23, 29 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅) → (𝐴 ∈ ((int‘𝐽)‘𝑛) → ∀𝑠 ∈ 𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ≠ ∅))) |
31 | 21, 30 | mpid 44 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅) → ∀𝑠 ∈ 𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
32 | | ssrin 4164 |
. . . . . . . 8
⊢
(((int‘𝐽)‘𝑛) ⊆ 𝑛 → (((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ⊆ (𝑛 ∩ (𝐹 “ 𝑠))) |
33 | | ssn0 4331 |
. . . . . . . . 9
⊢
(((((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ⊆ (𝑛 ∩ (𝐹 “ 𝑠)) ∧ (((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ≠ ∅) → (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅) |
34 | 33 | ex 412 |
. . . . . . . 8
⊢
((((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ⊆ (𝑛 ∩ (𝐹 “ 𝑠)) → ((((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
35 | 32, 34 | syl 17 |
. . . . . . 7
⊢
(((int‘𝐽)‘𝑛) ⊆ 𝑛 → ((((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
36 | 35 | ralimdv 3103 |
. . . . . 6
⊢
(((int‘𝐽)‘𝑛) ⊆ 𝑛 → (∀𝑠 ∈ 𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ≠ ∅ → ∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
37 | 10, 31, 36 | sylsyld 61 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅) → ∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
38 | 37 | ralrimdva 3112 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
39 | | simpl1 1189 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
40 | 39, 3 | syl 17 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ Top) |
41 | | opnneip 22178 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴})) |
42 | 41 | 3expb 1118 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ (𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜)) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴})) |
43 | 40, 42 | sylan 579 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ (𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜)) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴})) |
44 | | ineq1 4136 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑜 → (𝑛 ∩ (𝐹 “ 𝑠)) = (𝑜 ∩ (𝐹 “ 𝑠))) |
45 | 44 | neeq1d 3002 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑜 → ((𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ ↔ (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
46 | 45 | ralbidv 3120 |
. . . . . . . . 9
⊢ (𝑛 = 𝑜 → (∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ ↔ ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
47 | 46 | rspcv 3547 |
. . . . . . . 8
⊢ (𝑜 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
48 | 43, 47 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ (𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜)) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
49 | 48 | expr 456 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (𝐴 ∈ 𝑜 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅))) |
50 | 49 | com23 86 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅))) |
51 | 50 | ralrimdva 3112 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅))) |
52 | 38, 51 | impbid 211 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
53 | 52 | pm5.32da 578 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅)) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅))) |
54 | 1, 53 | bitrd 278 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅))) |