| Step | Hyp | Ref
| Expression |
| 1 | | isfcf 23972 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅)))) |
| 2 | | simpll1 1213 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐽 ∈ (TopOn‘𝑋)) |
| 3 | | topontop 22851 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 4 | 2, 3 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐽 ∈ Top) |
| 5 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) |
| 6 | | eqid 2735 |
. . . . . . . . 9
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 7 | 6 | neii1 23044 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛 ⊆ ∪ 𝐽) |
| 8 | 4, 5, 7 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛 ⊆ ∪ 𝐽) |
| 9 | 6 | ntrss2 22995 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑛 ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘𝑛) ⊆ 𝑛) |
| 10 | 4, 8, 9 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → ((int‘𝐽)‘𝑛) ⊆ 𝑛) |
| 11 | | simplr 768 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 ∈ 𝑋) |
| 12 | | toponuni 22852 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 13 | 2, 12 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑋 = ∪ 𝐽) |
| 14 | 11, 13 | eleqtrd 2836 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 ∈ ∪ 𝐽) |
| 15 | 14 | snssd 4785 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → {𝐴} ⊆ ∪ 𝐽) |
| 16 | 6 | neiint 23042 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ {𝐴} ⊆ ∪ 𝐽
∧ 𝑛 ⊆ ∪ 𝐽)
→ (𝑛 ∈
((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑛))) |
| 17 | 4, 15, 8, 16 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑛))) |
| 18 | 5, 17 | mpbid 232 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → {𝐴} ⊆ ((int‘𝐽)‘𝑛)) |
| 19 | | snssg 4759 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ ((int‘𝐽)‘𝑛) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑛))) |
| 20 | 11, 19 | syl 17 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (𝐴 ∈ ((int‘𝐽)‘𝑛) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑛))) |
| 21 | 18, 20 | mpbird 257 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 ∈ ((int‘𝐽)‘𝑛)) |
| 22 | 6 | ntropn 22987 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑛 ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘𝑛) ∈ 𝐽) |
| 23 | 4, 8, 22 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → ((int‘𝐽)‘𝑛) ∈ 𝐽) |
| 24 | | eleq2 2823 |
. . . . . . . . . 10
⊢ (𝑜 = ((int‘𝐽)‘𝑛) → (𝐴 ∈ 𝑜 ↔ 𝐴 ∈ ((int‘𝐽)‘𝑛))) |
| 25 | | ineq1 4188 |
. . . . . . . . . . . 12
⊢ (𝑜 = ((int‘𝐽)‘𝑛) → (𝑜 ∩ (𝐹 “ 𝑠)) = (((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠))) |
| 26 | 25 | neeq1d 2991 |
. . . . . . . . . . 11
⊢ (𝑜 = ((int‘𝐽)‘𝑛) → ((𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅ ↔ (((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
| 27 | 26 | ralbidv 3163 |
. . . . . . . . . 10
⊢ (𝑜 = ((int‘𝐽)‘𝑛) → (∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅ ↔ ∀𝑠 ∈ 𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
| 28 | 24, 27 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑜 = ((int‘𝐽)‘𝑛) → ((𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅) ↔ (𝐴 ∈ ((int‘𝐽)‘𝑛) → ∀𝑠 ∈ 𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ≠ ∅))) |
| 29 | 28 | rspcv 3597 |
. . . . . . . 8
⊢
(((int‘𝐽)‘𝑛) ∈ 𝐽 → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅) → (𝐴 ∈ ((int‘𝐽)‘𝑛) → ∀𝑠 ∈ 𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ≠ ∅))) |
| 30 | 23, 29 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅) → (𝐴 ∈ ((int‘𝐽)‘𝑛) → ∀𝑠 ∈ 𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ≠ ∅))) |
| 31 | 21, 30 | mpid 44 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅) → ∀𝑠 ∈ 𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
| 32 | | ssrin 4217 |
. . . . . . . 8
⊢
(((int‘𝐽)‘𝑛) ⊆ 𝑛 → (((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ⊆ (𝑛 ∩ (𝐹 “ 𝑠))) |
| 33 | | ssn0 4379 |
. . . . . . . . 9
⊢
(((((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ⊆ (𝑛 ∩ (𝐹 “ 𝑠)) ∧ (((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ≠ ∅) → (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅) |
| 34 | 33 | ex 412 |
. . . . . . . 8
⊢
((((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ⊆ (𝑛 ∩ (𝐹 “ 𝑠)) → ((((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
| 35 | 32, 34 | syl 17 |
. . . . . . 7
⊢
(((int‘𝐽)‘𝑛) ⊆ 𝑛 → ((((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
| 36 | 35 | ralimdv 3154 |
. . . . . 6
⊢
(((int‘𝐽)‘𝑛) ⊆ 𝑛 → (∀𝑠 ∈ 𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹 “ 𝑠)) ≠ ∅ → ∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
| 37 | 10, 31, 36 | sylsyld 61 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅) → ∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
| 38 | 37 | ralrimdva 3140 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
| 39 | | simpl1 1192 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 40 | 39, 3 | syl 17 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ Top) |
| 41 | | opnneip 23057 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴})) |
| 42 | 41 | 3expb 1120 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ (𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜)) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴})) |
| 43 | 40, 42 | sylan 580 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ (𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜)) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴})) |
| 44 | | ineq1 4188 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑜 → (𝑛 ∩ (𝐹 “ 𝑠)) = (𝑜 ∩ (𝐹 “ 𝑠))) |
| 45 | 44 | neeq1d 2991 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑜 → ((𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ ↔ (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
| 46 | 45 | ralbidv 3163 |
. . . . . . . . 9
⊢ (𝑛 = 𝑜 → (∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ ↔ ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
| 47 | 46 | rspcv 3597 |
. . . . . . . 8
⊢ (𝑜 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
| 48 | 43, 47 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ (𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜)) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
| 49 | 48 | expr 456 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (𝐴 ∈ 𝑜 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅))) |
| 50 | 49 | com23 86 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅))) |
| 51 | 50 | ralrimdva 3140 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅))) |
| 52 | 38, 51 | impbid 212 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
| 53 | 52 | pm5.32da 579 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅)) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅))) |
| 54 | 1, 53 | bitrd 279 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅))) |