| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fulltermc | Structured version Visualization version GIF version | ||
| Description: A functor to a terminal category is full iff all hom-sets of the source category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.) |
| Ref | Expression |
|---|---|
| fulltermc.b | ⊢ 𝐵 = (Base‘𝐶) |
| fulltermc.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| fulltermc.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) |
| fulltermc.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| Ref | Expression |
|---|---|
| fulltermc | ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fulltermc.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | eqid 2731 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 3 | fulltermc.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | fulltermc.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 5 | 4 | termcthind 49510 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ThinCat) |
| 6 | fulltermc.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 7 | 1, 2, 3, 5, 6 | fullthinc 49482 | . 2 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅))) |
| 8 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐷 ∈ TermCat) |
| 9 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 10 | 1, 9, 6 | funcf1 17768 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐷)) |
| 11 | 10 | ffvelcdmda 7012 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) ∈ (Base‘𝐷)) |
| 12 | 11 | adantrr 717 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘𝑥) ∈ (Base‘𝐷)) |
| 13 | 10 | ffvelcdmda 7012 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑦) ∈ (Base‘𝐷)) |
| 14 | 13 | adantrl 716 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘𝑦) ∈ (Base‘𝐷)) |
| 15 | 8, 9, 12, 14, 2 | termchomn0 49516 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅) |
| 16 | biimt 360 | . . . . 5 ⊢ (¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅ → (¬ (𝑥𝐻𝑦) = ∅ ↔ (¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅))) | |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (¬ (𝑥𝐻𝑦) = ∅ ↔ (¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅))) |
| 18 | con34b 316 | . . . 4 ⊢ (((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅) ↔ (¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅)) | |
| 19 | 17, 18 | bitr4di 289 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (¬ (𝑥𝐻𝑦) = ∅ ↔ ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅))) |
| 20 | 19 | 2ralbidva 3194 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅))) |
| 21 | 7, 20 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∅c0 4278 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 Hom chom 17167 Func cfunc 17756 Full cful 17806 TermCatctermc 49504 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-map 8747 df-ixp 8817 df-cat 17569 df-cid 17570 df-func 17760 df-full 17808 df-thinc 49450 df-termc 49505 |
| This theorem is referenced by: fulltermc2 49544 |
| Copyright terms: Public domain | W3C validator |