Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fulltermc Structured version   Visualization version   GIF version

Theorem fulltermc 49480
Description: A functor to a terminal category is full iff all hom-sets of the source category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
fulltermc.b 𝐵 = (Base‘𝐶)
fulltermc.h 𝐻 = (Hom ‘𝐶)
fulltermc.d (𝜑𝐷 ∈ TermCat)
fulltermc.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
Assertion
Ref Expression
fulltermc (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ¬ (𝑥𝐻𝑦) = ∅))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦

Proof of Theorem fulltermc
StepHypRef Expression
1 fulltermc.b . . 3 𝐵 = (Base‘𝐶)
2 eqid 2730 . . 3 (Hom ‘𝐷) = (Hom ‘𝐷)
3 fulltermc.h . . 3 𝐻 = (Hom ‘𝐶)
4 fulltermc.d . . . 4 (𝜑𝐷 ∈ TermCat)
54termcthind 49447 . . 3 (𝜑𝐷 ∈ ThinCat)
6 fulltermc.f . . 3 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
71, 2, 3, 5, 6fullthinc 49419 . 2 (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅)))
84adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷 ∈ TermCat)
9 eqid 2730 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
101, 9, 6funcf1 17834 . . . . . . . 8 (𝜑𝐹:𝐵⟶(Base‘𝐷))
1110ffvelcdmda 7058 . . . . . . 7 ((𝜑𝑥𝐵) → (𝐹𝑥) ∈ (Base‘𝐷))
1211adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑥) ∈ (Base‘𝐷))
1310ffvelcdmda 7058 . . . . . . 7 ((𝜑𝑦𝐵) → (𝐹𝑦) ∈ (Base‘𝐷))
1413adantrl 716 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑦) ∈ (Base‘𝐷))
158, 9, 12, 14, 2termchomn0 49453 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ¬ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅)
16 biimt 360 . . . . 5 (¬ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅ → (¬ (𝑥𝐻𝑦) = ∅ ↔ (¬ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅)))
1715, 16syl 17 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (¬ (𝑥𝐻𝑦) = ∅ ↔ (¬ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅)))
18 con34b 316 . . . 4 (((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅) ↔ (¬ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅))
1917, 18bitr4di 289 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (¬ (𝑥𝐻𝑦) = ∅ ↔ ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅)))
20192ralbidva 3200 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵 ¬ (𝑥𝐻𝑦) = ∅ ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅)))
217, 20bitr4d 282 1 (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ¬ (𝑥𝐻𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  c0 4298   class class class wbr 5109  cfv 6513  (class class class)co 7389  Basecbs 17185  Hom chom 17237   Func cfunc 17822   Full cful 17872  TermCatctermc 49441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803  df-ixp 8873  df-cat 17635  df-cid 17636  df-func 17826  df-full 17874  df-thinc 49387  df-termc 49442
This theorem is referenced by:  fulltermc2  49481
  Copyright terms: Public domain W3C validator