| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fulltermc | Structured version Visualization version GIF version | ||
| Description: A functor to a terminal category is full iff all hom-sets of the source category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.) |
| Ref | Expression |
|---|---|
| fulltermc.b | ⊢ 𝐵 = (Base‘𝐶) |
| fulltermc.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| fulltermc.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) |
| fulltermc.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| Ref | Expression |
|---|---|
| fulltermc | ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fulltermc.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | eqid 2730 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 3 | fulltermc.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | fulltermc.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 5 | 4 | termcthind 49447 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ThinCat) |
| 6 | fulltermc.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 7 | 1, 2, 3, 5, 6 | fullthinc 49419 | . 2 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅))) |
| 8 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐷 ∈ TermCat) |
| 9 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 10 | 1, 9, 6 | funcf1 17834 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐷)) |
| 11 | 10 | ffvelcdmda 7058 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) ∈ (Base‘𝐷)) |
| 12 | 11 | adantrr 717 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘𝑥) ∈ (Base‘𝐷)) |
| 13 | 10 | ffvelcdmda 7058 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑦) ∈ (Base‘𝐷)) |
| 14 | 13 | adantrl 716 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘𝑦) ∈ (Base‘𝐷)) |
| 15 | 8, 9, 12, 14, 2 | termchomn0 49453 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅) |
| 16 | biimt 360 | . . . . 5 ⊢ (¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅ → (¬ (𝑥𝐻𝑦) = ∅ ↔ (¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅))) | |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (¬ (𝑥𝐻𝑦) = ∅ ↔ (¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅))) |
| 18 | con34b 316 | . . . 4 ⊢ (((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅) ↔ (¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅)) | |
| 19 | 17, 18 | bitr4di 289 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (¬ (𝑥𝐻𝑦) = ∅ ↔ ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅))) |
| 20 | 19 | 2ralbidva 3200 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅))) |
| 21 | 7, 20 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∅c0 4298 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 Hom chom 17237 Func cfunc 17822 Full cful 17872 TermCatctermc 49441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-map 8803 df-ixp 8873 df-cat 17635 df-cid 17636 df-func 17826 df-full 17874 df-thinc 49387 df-termc 49442 |
| This theorem is referenced by: fulltermc2 49481 |
| Copyright terms: Public domain | W3C validator |