| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fulltermc | Structured version Visualization version GIF version | ||
| Description: A functor to a terminal category is full iff all hom-sets of the source category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.) |
| Ref | Expression |
|---|---|
| fulltermc.b | ⊢ 𝐵 = (Base‘𝐶) |
| fulltermc.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| fulltermc.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) |
| fulltermc.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| Ref | Expression |
|---|---|
| fulltermc | ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fulltermc.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | eqid 2734 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 3 | fulltermc.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | fulltermc.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 5 | 4 | termcthind 49177 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ThinCat) |
| 6 | fulltermc.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 7 | 1, 2, 3, 5, 6 | fullthinc 49151 | . 2 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅))) |
| 8 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐷 ∈ TermCat) |
| 9 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 10 | 1, 9, 6 | funcf1 17883 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐷)) |
| 11 | 10 | ffvelcdmda 7084 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) ∈ (Base‘𝐷)) |
| 12 | 11 | adantrr 717 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘𝑥) ∈ (Base‘𝐷)) |
| 13 | 10 | ffvelcdmda 7084 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑦) ∈ (Base‘𝐷)) |
| 14 | 13 | adantrl 716 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘𝑦) ∈ (Base‘𝐷)) |
| 15 | 8, 9, 12, 14, 2 | termchomn0 49182 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅) |
| 16 | biimt 360 | . . . . 5 ⊢ (¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅ → (¬ (𝑥𝐻𝑦) = ∅ ↔ (¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅))) | |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (¬ (𝑥𝐻𝑦) = ∅ ↔ (¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅))) |
| 18 | con34b 316 | . . . 4 ⊢ (((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅) ↔ (¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅)) | |
| 19 | 17, 18 | bitr4di 289 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (¬ (𝑥𝐻𝑦) = ∅ ↔ ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅))) |
| 20 | 19 | 2ralbidva 3206 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅))) |
| 21 | 7, 20 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∅c0 4313 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 Hom chom 17285 Func cfunc 17871 Full cful 17921 TermCatctermc 49171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-map 8850 df-ixp 8920 df-cat 17683 df-cid 17684 df-func 17875 df-full 17923 df-thinc 49119 df-termc 49172 |
| This theorem is referenced by: fulltermc2 49210 |
| Copyright terms: Public domain | W3C validator |