Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fulltermc Structured version   Visualization version   GIF version

Theorem fulltermc 49516
Description: A functor to a terminal category is full iff all hom-sets of the source category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
fulltermc.b 𝐵 = (Base‘𝐶)
fulltermc.h 𝐻 = (Hom ‘𝐶)
fulltermc.d (𝜑𝐷 ∈ TermCat)
fulltermc.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
Assertion
Ref Expression
fulltermc (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ¬ (𝑥𝐻𝑦) = ∅))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦

Proof of Theorem fulltermc
StepHypRef Expression
1 fulltermc.b . . 3 𝐵 = (Base‘𝐶)
2 eqid 2729 . . 3 (Hom ‘𝐷) = (Hom ‘𝐷)
3 fulltermc.h . . 3 𝐻 = (Hom ‘𝐶)
4 fulltermc.d . . . 4 (𝜑𝐷 ∈ TermCat)
54termcthind 49483 . . 3 (𝜑𝐷 ∈ ThinCat)
6 fulltermc.f . . 3 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
71, 2, 3, 5, 6fullthinc 49455 . 2 (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅)))
84adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷 ∈ TermCat)
9 eqid 2729 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
101, 9, 6funcf1 17792 . . . . . . . 8 (𝜑𝐹:𝐵⟶(Base‘𝐷))
1110ffvelcdmda 7022 . . . . . . 7 ((𝜑𝑥𝐵) → (𝐹𝑥) ∈ (Base‘𝐷))
1211adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑥) ∈ (Base‘𝐷))
1310ffvelcdmda 7022 . . . . . . 7 ((𝜑𝑦𝐵) → (𝐹𝑦) ∈ (Base‘𝐷))
1413adantrl 716 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑦) ∈ (Base‘𝐷))
158, 9, 12, 14, 2termchomn0 49489 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ¬ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅)
16 biimt 360 . . . . 5 (¬ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅ → (¬ (𝑥𝐻𝑦) = ∅ ↔ (¬ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅)))
1715, 16syl 17 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (¬ (𝑥𝐻𝑦) = ∅ ↔ (¬ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅)))
18 con34b 316 . . . 4 (((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅) ↔ (¬ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅))
1917, 18bitr4di 289 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (¬ (𝑥𝐻𝑦) = ∅ ↔ ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅)))
20192ralbidva 3191 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵 ¬ (𝑥𝐻𝑦) = ∅ ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅)))
217, 20bitr4d 282 1 (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ¬ (𝑥𝐻𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  c0 4286   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17139  Hom chom 17191   Func cfunc 17780   Full cful 17830  TermCatctermc 49477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-ixp 8832  df-cat 17593  df-cid 17594  df-func 17784  df-full 17832  df-thinc 49423  df-termc 49478
This theorem is referenced by:  fulltermc2  49517
  Copyright terms: Public domain W3C validator