| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fulltermc | Structured version Visualization version GIF version | ||
| Description: A functor to a terminal category is full iff all hom-sets of the source category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.) |
| Ref | Expression |
|---|---|
| fulltermc.b | ⊢ 𝐵 = (Base‘𝐶) |
| fulltermc.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| fulltermc.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) |
| fulltermc.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| Ref | Expression |
|---|---|
| fulltermc | ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fulltermc.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | eqid 2733 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 3 | fulltermc.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | fulltermc.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 5 | 4 | termcthind 49639 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ThinCat) |
| 6 | fulltermc.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 7 | 1, 2, 3, 5, 6 | fullthinc 49611 | . 2 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅))) |
| 8 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐷 ∈ TermCat) |
| 9 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 10 | 1, 9, 6 | funcf1 17781 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐷)) |
| 11 | 10 | ffvelcdmda 7026 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) ∈ (Base‘𝐷)) |
| 12 | 11 | adantrr 717 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘𝑥) ∈ (Base‘𝐷)) |
| 13 | 10 | ffvelcdmda 7026 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑦) ∈ (Base‘𝐷)) |
| 14 | 13 | adantrl 716 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘𝑦) ∈ (Base‘𝐷)) |
| 15 | 8, 9, 12, 14, 2 | termchomn0 49645 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅) |
| 16 | biimt 360 | . . . . 5 ⊢ (¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅ → (¬ (𝑥𝐻𝑦) = ∅ ↔ (¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅))) | |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (¬ (𝑥𝐻𝑦) = ∅ ↔ (¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅))) |
| 18 | con34b 316 | . . . 4 ⊢ (((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅) ↔ (¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅)) | |
| 19 | 17, 18 | bitr4di 289 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (¬ (𝑥𝐻𝑦) = ∅ ↔ ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅))) |
| 20 | 19 | 2ralbidva 3195 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅))) |
| 21 | 7, 20 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∅c0 4282 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 Hom chom 17179 Func cfunc 17769 Full cful 17819 TermCatctermc 49633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-map 8761 df-ixp 8832 df-cat 17582 df-cid 17583 df-func 17773 df-full 17821 df-thinc 49579 df-termc 49634 |
| This theorem is referenced by: fulltermc2 49673 |
| Copyright terms: Public domain | W3C validator |