Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fulltermc Structured version   Visualization version   GIF version

Theorem fulltermc 49672
Description: A functor to a terminal category is full iff all hom-sets of the source category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
fulltermc.b 𝐵 = (Base‘𝐶)
fulltermc.h 𝐻 = (Hom ‘𝐶)
fulltermc.d (𝜑𝐷 ∈ TermCat)
fulltermc.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
Assertion
Ref Expression
fulltermc (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ¬ (𝑥𝐻𝑦) = ∅))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦

Proof of Theorem fulltermc
StepHypRef Expression
1 fulltermc.b . . 3 𝐵 = (Base‘𝐶)
2 eqid 2733 . . 3 (Hom ‘𝐷) = (Hom ‘𝐷)
3 fulltermc.h . . 3 𝐻 = (Hom ‘𝐶)
4 fulltermc.d . . . 4 (𝜑𝐷 ∈ TermCat)
54termcthind 49639 . . 3 (𝜑𝐷 ∈ ThinCat)
6 fulltermc.f . . 3 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
71, 2, 3, 5, 6fullthinc 49611 . 2 (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅)))
84adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷 ∈ TermCat)
9 eqid 2733 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
101, 9, 6funcf1 17781 . . . . . . . 8 (𝜑𝐹:𝐵⟶(Base‘𝐷))
1110ffvelcdmda 7026 . . . . . . 7 ((𝜑𝑥𝐵) → (𝐹𝑥) ∈ (Base‘𝐷))
1211adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑥) ∈ (Base‘𝐷))
1310ffvelcdmda 7026 . . . . . . 7 ((𝜑𝑦𝐵) → (𝐹𝑦) ∈ (Base‘𝐷))
1413adantrl 716 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑦) ∈ (Base‘𝐷))
158, 9, 12, 14, 2termchomn0 49645 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ¬ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅)
16 biimt 360 . . . . 5 (¬ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅ → (¬ (𝑥𝐻𝑦) = ∅ ↔ (¬ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅)))
1715, 16syl 17 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (¬ (𝑥𝐻𝑦) = ∅ ↔ (¬ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅)))
18 con34b 316 . . . 4 (((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅) ↔ (¬ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅))
1917, 18bitr4di 289 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (¬ (𝑥𝐻𝑦) = ∅ ↔ ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅)))
20192ralbidva 3195 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵 ¬ (𝑥𝐻𝑦) = ∅ ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ∅)))
217, 20bitr4d 282 1 (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ¬ (𝑥𝐻𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  c0 4282   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17127  Hom chom 17179   Func cfunc 17769   Full cful 17819  TermCatctermc 49633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761  df-ixp 8832  df-cat 17582  df-cid 17583  df-func 17773  df-full 17821  df-thinc 49579  df-termc 49634
This theorem is referenced by:  fulltermc2  49673
  Copyright terms: Public domain W3C validator