![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fulltermc | Structured version Visualization version GIF version |
Description: A functor to a terminal category is full iff all hom-sets of the source category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.) |
Ref | Expression |
---|---|
fulltermc.b | ⊢ 𝐵 = (Base‘𝐶) |
fulltermc.h | ⊢ 𝐻 = (Hom ‘𝐶) |
fulltermc.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) |
fulltermc.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
Ref | Expression |
---|---|
fulltermc | ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fulltermc.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2736 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
3 | fulltermc.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | fulltermc.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
5 | 4 | termcthind 49098 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ThinCat) |
6 | fulltermc.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
7 | 1, 2, 3, 5, 6 | fullthinc 49072 | . 2 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅))) |
8 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐷 ∈ TermCat) |
9 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
10 | 1, 9, 6 | funcf1 17907 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐷)) |
11 | 10 | ffvelcdmda 7102 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) ∈ (Base‘𝐷)) |
12 | 11 | adantrr 717 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘𝑥) ∈ (Base‘𝐷)) |
13 | 10 | ffvelcdmda 7102 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑦) ∈ (Base‘𝐷)) |
14 | 13 | adantrl 716 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘𝑦) ∈ (Base‘𝐷)) |
15 | 8, 9, 12, 14, 2 | termchomn0 49102 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅) |
16 | biimt 360 | . . . . 5 ⊢ (¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅ → (¬ (𝑥𝐻𝑦) = ∅ ↔ (¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅))) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (¬ (𝑥𝐻𝑦) = ∅ ↔ (¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅))) |
18 | con34b 316 | . . . 4 ⊢ (((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅) ↔ (¬ ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅ → ¬ (𝑥𝐻𝑦) = ∅)) | |
19 | 17, 18 | bitr4di 289 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (¬ (𝑥𝐻𝑦) = ∅ ↔ ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅))) |
20 | 19 | 2ralbidva 3218 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ∅))) |
21 | 7, 20 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3060 ∅c0 4332 class class class wbr 5141 ‘cfv 6559 (class class class)co 7429 Basecbs 17243 Hom chom 17304 Func cfunc 17895 Full cful 17945 TermCatctermc 49092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-1st 8010 df-2nd 8011 df-map 8864 df-ixp 8934 df-cat 17707 df-cid 17708 df-func 17899 df-full 17947 df-thinc 49041 df-termc 49093 |
This theorem is referenced by: fulltermc2 49117 |
Copyright terms: Public domain | W3C validator |