| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ulmpm | Structured version Visualization version GIF version | ||
| Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| ulmpm | ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmf 26297 | . 2 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → ∃𝑛 ∈ ℤ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) | |
| 2 | uzssz 12820 | . . . 4 ⊢ (ℤ≥‘𝑛) ⊆ ℤ | |
| 3 | ovex 7422 | . . . . 5 ⊢ (ℂ ↑m 𝑆) ∈ V | |
| 4 | zex 12544 | . . . . 5 ⊢ ℤ ∈ V | |
| 5 | elpm2r 8820 | . . . . 5 ⊢ ((((ℂ ↑m 𝑆) ∈ V ∧ ℤ ∈ V) ∧ (𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆) ∧ (ℤ≥‘𝑛) ⊆ ℤ)) → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)) | |
| 6 | 3, 4, 5 | mpanl12 702 | . . . 4 ⊢ ((𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆) ∧ (ℤ≥‘𝑛) ⊆ ℤ) → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)) |
| 7 | 2, 6 | mpan2 691 | . . 3 ⊢ (𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆) → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)) |
| 8 | 7 | rexlimivw 3131 | . 2 ⊢ (∃𝑛 ∈ ℤ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆) → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)) |
| 9 | 1, 8 | syl 17 | 1 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 ⊆ wss 3916 class class class wbr 5109 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 ↑m cmap 8801 ↑pm cpm 8802 ℂcc 11072 ℤcz 12535 ℤ≥cuz 12799 ⇝𝑢culm 26291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-map 8803 df-pm 8804 df-neg 11414 df-z 12536 df-uz 12800 df-ulm 26292 |
| This theorem is referenced by: ulmf2 26299 |
| Copyright terms: Public domain | W3C validator |