![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ulmpm | Structured version Visualization version GIF version |
Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
Ref | Expression |
---|---|
ulmpm | ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulmf 25825 | . 2 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → ∃𝑛 ∈ ℤ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) | |
2 | uzssz 12827 | . . . 4 ⊢ (ℤ≥‘𝑛) ⊆ ℤ | |
3 | ovex 7427 | . . . . 5 ⊢ (ℂ ↑m 𝑆) ∈ V | |
4 | zex 12551 | . . . . 5 ⊢ ℤ ∈ V | |
5 | elpm2r 8824 | . . . . 5 ⊢ ((((ℂ ↑m 𝑆) ∈ V ∧ ℤ ∈ V) ∧ (𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆) ∧ (ℤ≥‘𝑛) ⊆ ℤ)) → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)) | |
6 | 3, 4, 5 | mpanl12 700 | . . . 4 ⊢ ((𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆) ∧ (ℤ≥‘𝑛) ⊆ ℤ) → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)) |
7 | 2, 6 | mpan2 689 | . . 3 ⊢ (𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆) → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)) |
8 | 7 | rexlimivw 3151 | . 2 ⊢ (∃𝑛 ∈ ℤ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆) → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)) |
9 | 1, 8 | syl 17 | 1 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∃wrex 3070 Vcvv 3474 ⊆ wss 3945 class class class wbr 5142 ⟶wf 6529 ‘cfv 6533 (class class class)co 7394 ↑m cmap 8805 ↑pm cpm 8806 ℂcc 11092 ℤcz 12542 ℤ≥cuz 12806 ⇝𝑢culm 25819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5357 ax-pr 5421 ax-un 7709 ax-cnex 11150 ax-resscn 11151 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5568 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7397 df-oprab 7398 df-mpo 7399 df-map 8807 df-pm 8808 df-neg 11431 df-z 12543 df-uz 12807 df-ulm 25820 |
This theorem is referenced by: ulmf2 25827 |
Copyright terms: Public domain | W3C validator |