MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmpm Structured version   Visualization version   GIF version

Theorem ulmpm 26412
Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
ulmpm (𝐹(⇝𝑢𝑆)𝐺𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ))

Proof of Theorem ulmpm
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ulmf 26411 . 2 (𝐹(⇝𝑢𝑆)𝐺 → ∃𝑛 ∈ ℤ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
2 uzssz 12895 . . . 4 (ℤ𝑛) ⊆ ℤ
3 ovex 7457 . . . . 5 (ℂ ↑m 𝑆) ∈ V
4 zex 12619 . . . . 5 ℤ ∈ V
5 elpm2r 8874 . . . . 5 ((((ℂ ↑m 𝑆) ∈ V ∧ ℤ ∈ V) ∧ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ (ℤ𝑛) ⊆ ℤ)) → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ))
63, 4, 5mpanl12 700 . . . 4 ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ (ℤ𝑛) ⊆ ℤ) → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ))
72, 6mpan2 689 . . 3 (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ))
87rexlimivw 3141 . 2 (∃𝑛 ∈ ℤ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ))
91, 8syl 17 1 (𝐹(⇝𝑢𝑆)𝐺𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2099  wrex 3060  Vcvv 3462  wss 3947   class class class wbr 5153  wf 6550  cfv 6554  (class class class)co 7424  m cmap 8855  pm cpm 8856  cc 11156  cz 12610  cuz 12874  𝑢culm 26405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-map 8857  df-pm 8858  df-neg 11497  df-z 12611  df-uz 12875  df-ulm 26406
This theorem is referenced by:  ulmf2  26413
  Copyright terms: Public domain W3C validator