MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmpm Structured version   Visualization version   GIF version

Theorem ulmpm 24981
Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
ulmpm (𝐹(⇝𝑢𝑆)𝐺𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ))

Proof of Theorem ulmpm
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ulmf 24980 . 2 (𝐹(⇝𝑢𝑆)𝐺 → ∃𝑛 ∈ ℤ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
2 uzssz 12261 . . . 4 (ℤ𝑛) ⊆ ℤ
3 ovex 7182 . . . . 5 (ℂ ↑m 𝑆) ∈ V
4 zex 11987 . . . . 5 ℤ ∈ V
5 elpm2r 8420 . . . . 5 ((((ℂ ↑m 𝑆) ∈ V ∧ ℤ ∈ V) ∧ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ (ℤ𝑛) ⊆ ℤ)) → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ))
63, 4, 5mpanl12 701 . . . 4 ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ (ℤ𝑛) ⊆ ℤ) → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ))
72, 6mpan2 690 . . 3 (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ))
87rexlimivw 3274 . 2 (∃𝑛 ∈ ℤ 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ))
91, 8syl 17 1 (𝐹(⇝𝑢𝑆)𝐺𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2115  wrex 3134  Vcvv 3480  wss 3919   class class class wbr 5052  wf 6339  cfv 6343  (class class class)co 7149  m cmap 8402  pm cpm 8403  cc 10533  cz 11978  cuz 12240  𝑢culm 24974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-map 8404  df-pm 8405  df-neg 10871  df-z 11979  df-uz 12241  df-ulm 24975
This theorem is referenced by:  ulmf2  24982
  Copyright terms: Public domain W3C validator