![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzn0 | Structured version Visualization version GIF version |
Description: The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014.) |
Ref | Expression |
---|---|
uzn0 | β’ (π β ran β€β₯ β π β β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 12850 | . . 3 β’ β€β₯:β€βΆπ« β€ | |
2 | ffn 6717 | . . 3 β’ (β€β₯:β€βΆπ« β€ β β€β₯ Fn β€) | |
3 | fvelrnb 6954 | . . 3 β’ (β€β₯ Fn β€ β (π β ran β€β₯ β βπ β β€ (β€β₯βπ) = π)) | |
4 | 1, 2, 3 | mp2b 10 | . 2 β’ (π β ran β€β₯ β βπ β β€ (β€β₯βπ) = π) |
5 | uzid 12862 | . . . . 5 β’ (π β β€ β π β (β€β₯βπ)) | |
6 | 5 | ne0d 4332 | . . . 4 β’ (π β β€ β (β€β₯βπ) β β ) |
7 | neeq1 2999 | . . . 4 β’ ((β€β₯βπ) = π β ((β€β₯βπ) β β β π β β )) | |
8 | 6, 7 | syl5ibcom 244 | . . 3 β’ (π β β€ β ((β€β₯βπ) = π β π β β )) |
9 | 8 | rexlimiv 3144 | . 2 β’ (βπ β β€ (β€β₯βπ) = π β π β β ) |
10 | 4, 9 | sylbi 216 | 1 β’ (π β ran β€β₯ β π β β ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1534 β wcel 2099 β wne 2936 βwrex 3066 β c0 4319 π« cpw 4599 ran crn 5674 Fn wfn 6538 βΆwf 6539 βcfv 6543 β€cz 12583 β€β₯cuz 12847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-pre-lttri 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7418 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-neg 11472 df-z 12584 df-uz 12848 |
This theorem is referenced by: heibor1lem 37277 |
Copyright terms: Public domain | W3C validator |