Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uzn0 | Structured version Visualization version GIF version |
Description: The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014.) |
Ref | Expression |
---|---|
uzn0 | ⊢ (𝑀 ∈ ran ℤ≥ → 𝑀 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 12585 | . . 3 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
2 | ffn 6600 | . . 3 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → ℤ≥ Fn ℤ) | |
3 | fvelrnb 6830 | . . 3 ⊢ (ℤ≥ Fn ℤ → (𝑀 ∈ ran ℤ≥ ↔ ∃𝑘 ∈ ℤ (ℤ≥‘𝑘) = 𝑀)) | |
4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ (𝑀 ∈ ran ℤ≥ ↔ ∃𝑘 ∈ ℤ (ℤ≥‘𝑘) = 𝑀) |
5 | uzid 12597 | . . . . 5 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ (ℤ≥‘𝑘)) | |
6 | 5 | ne0d 4269 | . . . 4 ⊢ (𝑘 ∈ ℤ → (ℤ≥‘𝑘) ≠ ∅) |
7 | neeq1 3006 | . . . 4 ⊢ ((ℤ≥‘𝑘) = 𝑀 → ((ℤ≥‘𝑘) ≠ ∅ ↔ 𝑀 ≠ ∅)) | |
8 | 6, 7 | syl5ibcom 244 | . . 3 ⊢ (𝑘 ∈ ℤ → ((ℤ≥‘𝑘) = 𝑀 → 𝑀 ≠ ∅)) |
9 | 8 | rexlimiv 3209 | . 2 ⊢ (∃𝑘 ∈ ℤ (ℤ≥‘𝑘) = 𝑀 → 𝑀 ≠ ∅) |
10 | 4, 9 | sylbi 216 | 1 ⊢ (𝑀 ∈ ran ℤ≥ → 𝑀 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 ∅c0 4256 𝒫 cpw 4533 ran crn 5590 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 ℤcz 12319 ℤ≥cuz 12582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-neg 11208 df-z 12320 df-uz 12583 |
This theorem is referenced by: heibor1lem 35967 |
Copyright terms: Public domain | W3C validator |