| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzn0 | Structured version Visualization version GIF version | ||
| Description: The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014.) |
| Ref | Expression |
|---|---|
| uzn0 | ⊢ (𝑀 ∈ ran ℤ≥ → 𝑀 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf 12803 | . . 3 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 2 | ffn 6691 | . . 3 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → ℤ≥ Fn ℤ) | |
| 3 | fvelrnb 6924 | . . 3 ⊢ (ℤ≥ Fn ℤ → (𝑀 ∈ ran ℤ≥ ↔ ∃𝑘 ∈ ℤ (ℤ≥‘𝑘) = 𝑀)) | |
| 4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ (𝑀 ∈ ran ℤ≥ ↔ ∃𝑘 ∈ ℤ (ℤ≥‘𝑘) = 𝑀) |
| 5 | uzid 12815 | . . . . 5 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ (ℤ≥‘𝑘)) | |
| 6 | 5 | ne0d 4308 | . . . 4 ⊢ (𝑘 ∈ ℤ → (ℤ≥‘𝑘) ≠ ∅) |
| 7 | neeq1 2988 | . . . 4 ⊢ ((ℤ≥‘𝑘) = 𝑀 → ((ℤ≥‘𝑘) ≠ ∅ ↔ 𝑀 ≠ ∅)) | |
| 8 | 6, 7 | syl5ibcom 245 | . . 3 ⊢ (𝑘 ∈ ℤ → ((ℤ≥‘𝑘) = 𝑀 → 𝑀 ≠ ∅)) |
| 9 | 8 | rexlimiv 3128 | . 2 ⊢ (∃𝑘 ∈ ℤ (ℤ≥‘𝑘) = 𝑀 → 𝑀 ≠ ∅) |
| 10 | 4, 9 | sylbi 217 | 1 ⊢ (𝑀 ∈ ran ℤ≥ → 𝑀 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 ∅c0 4299 𝒫 cpw 4566 ran crn 5642 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 ℤcz 12536 ℤ≥cuz 12800 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-neg 11415 df-z 12537 df-uz 12801 |
| This theorem is referenced by: heibor1lem 37810 |
| Copyright terms: Public domain | W3C validator |