MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzn0 Structured version   Visualization version   GIF version

Theorem uzn0 12599
Description: The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014.)
Assertion
Ref Expression
uzn0 (𝑀 ∈ ran ℤ𝑀 ≠ ∅)

Proof of Theorem uzn0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 uzf 12585 . . 3 :ℤ⟶𝒫 ℤ
2 ffn 6600 . . 3 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
3 fvelrnb 6830 . . 3 (ℤ Fn ℤ → (𝑀 ∈ ran ℤ ↔ ∃𝑘 ∈ ℤ (ℤ𝑘) = 𝑀))
41, 2, 3mp2b 10 . 2 (𝑀 ∈ ran ℤ ↔ ∃𝑘 ∈ ℤ (ℤ𝑘) = 𝑀)
5 uzid 12597 . . . . 5 (𝑘 ∈ ℤ → 𝑘 ∈ (ℤ𝑘))
65ne0d 4269 . . . 4 (𝑘 ∈ ℤ → (ℤ𝑘) ≠ ∅)
7 neeq1 3006 . . . 4 ((ℤ𝑘) = 𝑀 → ((ℤ𝑘) ≠ ∅ ↔ 𝑀 ≠ ∅))
86, 7syl5ibcom 244 . . 3 (𝑘 ∈ ℤ → ((ℤ𝑘) = 𝑀𝑀 ≠ ∅))
98rexlimiv 3209 . 2 (∃𝑘 ∈ ℤ (ℤ𝑘) = 𝑀𝑀 ≠ ∅)
104, 9sylbi 216 1 (𝑀 ∈ ran ℤ𝑀 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wne 2943  wrex 3065  c0 4256  𝒫 cpw 4533  ran crn 5590   Fn wfn 6428  wf 6429  cfv 6433  cz 12319  cuz 12582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-neg 11208  df-z 12320  df-uz 12583
This theorem is referenced by:  heibor1lem  35967
  Copyright terms: Public domain W3C validator