| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzn0 | Structured version Visualization version GIF version | ||
| Description: The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014.) |
| Ref | Expression |
|---|---|
| uzn0 | ⊢ (𝑀 ∈ ran ℤ≥ → 𝑀 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf 12860 | . . 3 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 2 | ffn 6711 | . . 3 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → ℤ≥ Fn ℤ) | |
| 3 | fvelrnb 6944 | . . 3 ⊢ (ℤ≥ Fn ℤ → (𝑀 ∈ ran ℤ≥ ↔ ∃𝑘 ∈ ℤ (ℤ≥‘𝑘) = 𝑀)) | |
| 4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ (𝑀 ∈ ran ℤ≥ ↔ ∃𝑘 ∈ ℤ (ℤ≥‘𝑘) = 𝑀) |
| 5 | uzid 12872 | . . . . 5 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ (ℤ≥‘𝑘)) | |
| 6 | 5 | ne0d 4322 | . . . 4 ⊢ (𝑘 ∈ ℤ → (ℤ≥‘𝑘) ≠ ∅) |
| 7 | neeq1 2995 | . . . 4 ⊢ ((ℤ≥‘𝑘) = 𝑀 → ((ℤ≥‘𝑘) ≠ ∅ ↔ 𝑀 ≠ ∅)) | |
| 8 | 6, 7 | syl5ibcom 245 | . . 3 ⊢ (𝑘 ∈ ℤ → ((ℤ≥‘𝑘) = 𝑀 → 𝑀 ≠ ∅)) |
| 9 | 8 | rexlimiv 3135 | . 2 ⊢ (∃𝑘 ∈ ℤ (ℤ≥‘𝑘) = 𝑀 → 𝑀 ≠ ∅) |
| 10 | 4, 9 | sylbi 217 | 1 ⊢ (𝑀 ∈ ran ℤ≥ → 𝑀 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 ∅c0 4313 𝒫 cpw 4580 ran crn 5660 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 ℤcz 12593 ℤ≥cuz 12857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-pre-lttri 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-neg 11474 df-z 12594 df-uz 12858 |
| This theorem is referenced by: heibor1lem 37838 |
| Copyright terms: Public domain | W3C validator |