Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzidd Structured version   Visualization version   GIF version

Theorem uzidd 41220
Description: Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
uzidd.1 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
uzidd (𝜑𝑀 ∈ (ℤ𝑀))

Proof of Theorem uzidd
StepHypRef Expression
1 uzidd.1 . 2 (𝜑𝑀 ∈ ℤ)
2 uzid 12108 . 2 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 17 1 (𝜑𝑀 ∈ (ℤ𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2081  cfv 6225  cz 11829  cuz 12093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-pre-lttri 10457
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-neg 10720  df-z 11830  df-uz 12094
This theorem is referenced by:  uzidd2  41232  uzinico3  41381  smflimsuplem7  42642  smflimsuplem8  42643  smflimsupmpt  42645  smfliminfmpt  42648
  Copyright terms: Public domain W3C validator