MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzidd Structured version   Visualization version   GIF version

Theorem uzidd 12454
Description: Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
uzidd.1 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
uzidd (𝜑𝑀 ∈ (ℤ𝑀))

Proof of Theorem uzidd
StepHypRef Expression
1 uzidd.1 . 2 (𝜑𝑀 ∈ ℤ)
2 uzid 12453 . 2 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 17 1 (𝜑𝑀 ∈ (ℤ𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  cfv 6380  cz 12176  cuz 12438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-pre-lttri 10803
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-neg 11065  df-z 12177  df-uz 12439
This theorem is referenced by:  ccatass  14145  ccatrn  14146  swrdccat2  14234  pfxccat1  14267  splfv1  14320  splval2  14322  revccat  14331  ntrivcvgn0  15462  gsumsplit1r  18159  gsumsgrpccat  18266  efginvrel2  19117  signstfvp  32262  poimirlem20  35534  aks4d1p1p3  39810  aks4d1p1p4  39812  aks4d1p1p6  39814  aks4d1p1p7  39815  aks4d1p1p5  39816  aks4d1p1  39817  uzidd2  42629  uzinico3  42776  smflimsuplem7  44031  smflimsuplem8  44032  smflimsupmpt  44034  smfliminfmpt  44037
  Copyright terms: Public domain W3C validator