| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzidd | Structured version Visualization version GIF version | ||
| Description: Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| uzidd.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| Ref | Expression |
|---|---|
| uzidd | ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzidd.1 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | uzid 12784 | . 2 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6499 ℤcz 12505 ℤ≥cuz 12769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-neg 11384 df-z 12506 df-uz 12770 |
| This theorem is referenced by: fzdif1 13542 ccatass 14529 ccatrn 14530 swrdccat2 14610 pfxccat1 14643 splfv1 14696 splval2 14698 revccat 14707 ntrivcvgn0 15840 gsumsplit1r 18596 gsumsgrpccat 18749 efginvrel2 19641 signstfvp 34555 poimirlem20 37627 aks4d1p1p3 42050 aks4d1p1p4 42052 aks4d1p1p6 42054 aks4d1p1p7 42055 aks4d1p1p5 42056 aks4d1p1 42057 aks4d1p6 42062 sumcubes 42294 uzidd2 45405 uzinico3 45553 smflimsuplem7 46817 smflimsuplem8 46818 smflimsupmpt 46820 smfliminfmpt 46823 |
| Copyright terms: Public domain | W3C validator |