MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzidd Structured version   Visualization version   GIF version

Theorem uzidd 12844
Description: Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
uzidd.1 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
uzidd (𝜑𝑀 ∈ (ℤ𝑀))

Proof of Theorem uzidd
StepHypRef Expression
1 uzidd.1 . 2 (𝜑𝑀 ∈ ℤ)
2 uzid 12843 . 2 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 17 1 (𝜑𝑀 ∈ (ℤ𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  cfv 6544  cz 12564  cuz 12828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-pre-lttri 11188
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7416  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-neg 11453  df-z 12565  df-uz 12829
This theorem is referenced by:  ccatass  14544  ccatrn  14545  swrdccat2  14625  pfxccat1  14658  splfv1  14711  splval2  14713  revccat  14722  ntrivcvgn0  15850  gsumsplit1r  18614  gsumsgrpccat  18759  efginvrel2  19638  signstfvp  33878  poimirlem20  36813  aks4d1p1p3  41242  aks4d1p1p4  41244  aks4d1p1p6  41246  aks4d1p1p7  41247  aks4d1p1p5  41248  aks4d1p1  41249  aks4d1p6  41254  sumcubes  41515  uzidd2  44426  uzinico3  44576  smflimsuplem7  45842  smflimsuplem8  45843  smflimsupmpt  45845  smfliminfmpt  45848
  Copyright terms: Public domain W3C validator