Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uzidd | Structured version Visualization version GIF version |
Description: Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
uzidd.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
Ref | Expression |
---|---|
uzidd | ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzidd.1 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | uzid 12453 | . 2 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 ‘cfv 6380 ℤcz 12176 ℤ≥cuz 12438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-pre-lttri 10803 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-neg 11065 df-z 12177 df-uz 12439 |
This theorem is referenced by: ccatass 14145 ccatrn 14146 swrdccat2 14234 pfxccat1 14267 splfv1 14320 splval2 14322 revccat 14331 ntrivcvgn0 15462 gsumsplit1r 18159 gsumsgrpccat 18266 efginvrel2 19117 signstfvp 32262 poimirlem20 35534 aks4d1p1p3 39810 aks4d1p1p4 39812 aks4d1p1p6 39814 aks4d1p1p7 39815 aks4d1p1p5 39816 aks4d1p1 39817 uzidd2 42629 uzinico3 42776 smflimsuplem7 44031 smflimsuplem8 44032 smflimsupmpt 44034 smfliminfmpt 44037 |
Copyright terms: Public domain | W3C validator |