| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzidd | Structured version Visualization version GIF version | ||
| Description: Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| uzidd.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| Ref | Expression |
|---|---|
| uzidd | ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzidd.1 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | uzid 12875 | . 2 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ‘cfv 6541 ℤcz 12596 ℤ≥cuz 12860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-pre-lttri 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-neg 11477 df-z 12597 df-uz 12861 |
| This theorem is referenced by: fzdif1 13627 ccatass 14608 ccatrn 14609 swrdccat2 14689 pfxccat1 14722 splfv1 14775 splval2 14777 revccat 14786 ntrivcvgn0 15916 gsumsplit1r 18669 gsumsgrpccat 18822 efginvrel2 19713 signstfvp 34545 poimirlem20 37606 aks4d1p1p3 42029 aks4d1p1p4 42031 aks4d1p1p6 42033 aks4d1p1p7 42034 aks4d1p1p5 42035 aks4d1p1 42036 aks4d1p6 42041 sumcubes 42310 uzidd2 45384 uzinico3 45533 smflimsuplem7 46798 smflimsuplem8 46799 smflimsupmpt 46801 smfliminfmpt 46804 |
| Copyright terms: Public domain | W3C validator |