![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uzssd3 | Structured version Visualization version GIF version |
Description: Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
uzssd3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
uzssd3 | ⊢ (𝑁 ∈ 𝑍 → (ℤ≥‘𝑁) ⊆ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzssd3.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | id 22 | . 2 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ 𝑍) | |
3 | 1, 2 | uzssd2 45321 | 1 ⊢ (𝑁 ∈ 𝑍 → (ℤ≥‘𝑁) ⊆ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6568 ℤ≥cuz 12897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-cnex 11234 ax-resscn 11235 ax-pre-lttri 11252 ax-pre-lttrn 11253 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-ov 7446 df-er 8757 df-en 8998 df-dom 8999 df-sdom 9000 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-neg 11517 df-z 12634 df-uz 12898 |
This theorem is referenced by: limsupvaluzmpt 45627 supcnvlimsupmpt 45651 climxlim2 45756 meaiuninc3v 46394 smflimmpt 46720 |
Copyright terms: Public domain | W3C validator |