Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uzssd2 | Structured version Visualization version GIF version |
Description: Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
uzssd2.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
uzssd2.2 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
Ref | Expression |
---|---|
uzssd2 | ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzssd2.2 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
2 | uzssd2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | 1, 2 | eleqtrdi 2847 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
4 | 3 | uzssd 42996 | . 2 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
5 | 4, 2 | sseqtrrdi 3977 | 1 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ⊆ wss 3892 ‘cfv 6458 ℤ≥cuz 12628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-pre-lttri 10991 ax-pre-lttrn 10992 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-neg 11254 df-z 12366 df-uz 12629 |
This theorem is referenced by: uzssd3 43014 limsupequzmpt2 43308 limsupvaluz2 43328 supcnvlimsup 43330 liminfequzmpt2 43381 xlimconst2 43425 smflimmpt 44397 smflimsuplem4 44410 smflimsuplem8 44414 |
Copyright terms: Public domain | W3C validator |