Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uzssd2 | Structured version Visualization version GIF version |
Description: Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
uzssd2.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
uzssd2.2 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
Ref | Expression |
---|---|
uzssd2 | ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzssd2.2 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
2 | uzssd2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | 1, 2 | eleqtrdi 2850 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
4 | 3 | uzssd 42902 | . 2 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
5 | 4, 2 | sseqtrrdi 3976 | 1 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ⊆ wss 3891 ‘cfv 6430 ℤ≥cuz 12564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-pre-lttri 10929 ax-pre-lttrn 10930 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-neg 11191 df-z 12303 df-uz 12565 |
This theorem is referenced by: uzssd3 42920 limsupequzmpt2 43213 limsupvaluz2 43233 supcnvlimsup 43235 liminfequzmpt2 43286 xlimconst2 43330 smflimmpt 44294 smflimsuplem4 44307 smflimsuplem8 44311 |
Copyright terms: Public domain | W3C validator |