| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uzssd2 | Structured version Visualization version GIF version | ||
| Description: Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| uzssd2.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| uzssd2.2 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| Ref | Expression |
|---|---|
| uzssd2 | ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzssd2.2 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
| 2 | uzssd2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | 1, 2 | eleqtrdi 2839 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 4 | 3 | uzssd 45425 | . 2 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
| 5 | 4, 2 | sseqtrrdi 3974 | 1 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ⊆ wss 3900 ‘cfv 6477 ℤ≥cuz 12724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-pre-lttri 11072 ax-pre-lttrn 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-neg 11339 df-z 12461 df-uz 12725 |
| This theorem is referenced by: uzssd3 45443 limsupequzmpt2 45735 supcnvlimsup 45757 liminfequzmpt2 45808 xlimconst2 45852 smflimmpt 46827 smflimsuplem4 46840 smflimsuplem8 46844 |
| Copyright terms: Public domain | W3C validator |