Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wlogle | Structured version Visualization version GIF version |
Description: If the predicate 𝜒(𝑥, 𝑦) is symmetric under interchange of 𝑥, 𝑦, then "without loss of generality" we can assume that 𝑥 ≤ 𝑦. (Contributed by Mario Carneiro, 18-Aug-2014.) (Revised by Mario Carneiro, 11-Sep-2014.) |
Ref | Expression |
---|---|
wlogle.1 | ⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → (𝜓 ↔ 𝜒)) |
wlogle.2 | ⊢ ((𝑧 = 𝑦 ∧ 𝑤 = 𝑥) → (𝜓 ↔ 𝜃)) |
wlogle.3 | ⊢ (𝜑 → 𝑆 ⊆ ℝ) |
wlogle.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝜒 ↔ 𝜃)) |
wlogle.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦)) → 𝜒) |
Ref | Expression |
---|---|
wlogle | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlogle.1 | . 2 ⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → (𝜓 ↔ 𝜒)) | |
2 | wlogle.2 | . 2 ⊢ ((𝑧 = 𝑦 ∧ 𝑤 = 𝑥) → (𝜓 ↔ 𝜃)) | |
3 | wlogle.3 | . 2 ⊢ (𝜑 → 𝑆 ⊆ ℝ) | |
4 | wlogle.5 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦)) → 𝜒) | |
5 | wlogle.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝜒 ↔ 𝜃)) | |
6 | 5 | 3adantr3 1170 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦)) → (𝜒 ↔ 𝜃)) |
7 | 4, 6 | mpbid 231 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦)) → 𝜃) |
8 | 1, 2, 3, 7, 4 | wloglei 11507 | 1 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ⊆ wss 3887 class class class wbr 5074 ℝcr 10870 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-pre-lttri 10945 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 |
This theorem is referenced by: vdwlem12 16693 iundisj2 24713 volcn 24770 dvlip 25157 ftc1a 25201 iundisj2f 30929 iundisj2fi 31118 erdszelem9 33161 ftc1anc 35858 |
Copyright terms: Public domain | W3C validator |