| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlogle | Structured version Visualization version GIF version | ||
| Description: If the predicate 𝜒(𝑥, 𝑦) is symmetric under interchange of 𝑥, 𝑦, then "without loss of generality" we can assume that 𝑥 ≤ 𝑦. (Contributed by Mario Carneiro, 18-Aug-2014.) (Revised by Mario Carneiro, 11-Sep-2014.) |
| Ref | Expression |
|---|---|
| wlogle.1 | ⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → (𝜓 ↔ 𝜒)) |
| wlogle.2 | ⊢ ((𝑧 = 𝑦 ∧ 𝑤 = 𝑥) → (𝜓 ↔ 𝜃)) |
| wlogle.3 | ⊢ (𝜑 → 𝑆 ⊆ ℝ) |
| wlogle.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝜒 ↔ 𝜃)) |
| wlogle.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦)) → 𝜒) |
| Ref | Expression |
|---|---|
| wlogle | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlogle.1 | . 2 ⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → (𝜓 ↔ 𝜒)) | |
| 2 | wlogle.2 | . 2 ⊢ ((𝑧 = 𝑦 ∧ 𝑤 = 𝑥) → (𝜓 ↔ 𝜃)) | |
| 3 | wlogle.3 | . 2 ⊢ (𝜑 → 𝑆 ⊆ ℝ) | |
| 4 | wlogle.5 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦)) → 𝜒) | |
| 5 | wlogle.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝜒 ↔ 𝜃)) | |
| 6 | 5 | 3adantr3 1172 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦)) → (𝜒 ↔ 𝜃)) |
| 7 | 4, 6 | mpbid 232 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 ≤ 𝑦)) → 𝜃) |
| 8 | 1, 2, 3, 7, 4 | wloglei 11646 | 1 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ⊆ wss 3902 class class class wbr 5091 ℝcr 11002 ≤ cle 11144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-pre-lttri 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 |
| This theorem is referenced by: vdwlem12 16901 iundisj2 25475 volcn 25532 dvlip 25923 ftc1a 25969 iundisj2f 32565 iundisj2fi 32774 erdszelem9 35231 ftc1anc 37740 |
| Copyright terms: Public domain | W3C validator |