MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlogle Structured version   Visualization version   GIF version

Theorem wlogle 11671
Description: If the predicate 𝜒(𝑥, 𝑦) is symmetric under interchange of 𝑥, 𝑦, then "without loss of generality" we can assume that 𝑥𝑦. (Contributed by Mario Carneiro, 18-Aug-2014.) (Revised by Mario Carneiro, 11-Sep-2014.)
Hypotheses
Ref Expression
wlogle.1 ((𝑧 = 𝑥𝑤 = 𝑦) → (𝜓𝜒))
wlogle.2 ((𝑧 = 𝑦𝑤 = 𝑥) → (𝜓𝜃))
wlogle.3 (𝜑𝑆 ⊆ ℝ)
wlogle.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝜒𝜃))
wlogle.5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑥𝑦)) → 𝜒)
Assertion
Ref Expression
wlogle ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝜒)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝜑   𝑤,𝑆,𝑥,𝑦,𝑧   𝜓,𝑥,𝑦   𝜒,𝑤,𝑧
Allowed substitution hints:   𝜓(𝑧,𝑤)   𝜒(𝑥,𝑦)   𝜃(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wlogle
StepHypRef Expression
1 wlogle.1 . 2 ((𝑧 = 𝑥𝑤 = 𝑦) → (𝜓𝜒))
2 wlogle.2 . 2 ((𝑧 = 𝑦𝑤 = 𝑥) → (𝜓𝜃))
3 wlogle.3 . 2 (𝜑𝑆 ⊆ ℝ)
4 wlogle.5 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑥𝑦)) → 𝜒)
5 wlogle.4 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝜒𝜃))
653adantr3 1172 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑥𝑦)) → (𝜒𝜃))
74, 6mpbid 232 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑥𝑦)) → 𝜃)
81, 2, 3, 7, 4wloglei 11670 1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wss 3905   class class class wbr 5095  cr 11027  cle 11169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-pre-lttri 11102
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174
This theorem is referenced by:  vdwlem12  16922  iundisj2  25466  volcn  25523  dvlip  25914  ftc1a  25960  iundisj2f  32552  iundisj2fi  32753  erdszelem9  35171  ftc1anc  37680
  Copyright terms: Public domain W3C validator