MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlogle Structured version   Visualization version   GIF version

Theorem wlogle 11718
Description: If the predicate 𝜒(𝑥, 𝑦) is symmetric under interchange of 𝑥, 𝑦, then "without loss of generality" we can assume that 𝑥𝑦. (Contributed by Mario Carneiro, 18-Aug-2014.) (Revised by Mario Carneiro, 11-Sep-2014.)
Hypotheses
Ref Expression
wlogle.1 ((𝑧 = 𝑥𝑤 = 𝑦) → (𝜓𝜒))
wlogle.2 ((𝑧 = 𝑦𝑤 = 𝑥) → (𝜓𝜃))
wlogle.3 (𝜑𝑆 ⊆ ℝ)
wlogle.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝜒𝜃))
wlogle.5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑥𝑦)) → 𝜒)
Assertion
Ref Expression
wlogle ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝜒)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝜑   𝑤,𝑆,𝑥,𝑦,𝑧   𝜓,𝑥,𝑦   𝜒,𝑤,𝑧
Allowed substitution hints:   𝜓(𝑧,𝑤)   𝜒(𝑥,𝑦)   𝜃(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wlogle
StepHypRef Expression
1 wlogle.1 . 2 ((𝑧 = 𝑥𝑤 = 𝑦) → (𝜓𝜒))
2 wlogle.2 . 2 ((𝑧 = 𝑦𝑤 = 𝑥) → (𝜓𝜃))
3 wlogle.3 . 2 (𝜑𝑆 ⊆ ℝ)
4 wlogle.5 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑥𝑦)) → 𝜒)
5 wlogle.4 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝜒𝜃))
653adantr3 1172 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑥𝑦)) → (𝜒𝜃))
74, 6mpbid 232 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑥𝑦)) → 𝜃)
81, 2, 3, 7, 4wloglei 11717 1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wss 3917   class class class wbr 5110  cr 11074  cle 11216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-pre-lttri 11149
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221
This theorem is referenced by:  vdwlem12  16970  iundisj2  25457  volcn  25514  dvlip  25905  ftc1a  25951  iundisj2f  32526  iundisj2fi  32727  erdszelem9  35193  ftc1anc  37702
  Copyright terms: Public domain W3C validator