MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1oxmet Structured version   Visualization version   GIF version

Theorem imasf1oxmet 22912
Description: The image of an extended metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
imasf1oxmet.u (𝜑𝑈 = (𝐹s 𝑅))
imasf1oxmet.v (𝜑𝑉 = (Base‘𝑅))
imasf1oxmet.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasf1oxmet.r (𝜑𝑅𝑍)
imasf1oxmet.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
imasf1oxmet.d 𝐷 = (dist‘𝑈)
imasf1oxmet.m (𝜑𝐸 ∈ (∞Met‘𝑉))
Assertion
Ref Expression
imasf1oxmet (𝜑𝐷 ∈ (∞Met‘𝐵))

Proof of Theorem imasf1oxmet
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasf1oxmet.u . . . 4 (𝜑𝑈 = (𝐹s 𝑅))
2 imasf1oxmet.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 imasf1oxmet.f . . . . 5 (𝜑𝐹:𝑉1-1-onto𝐵)
4 f1ofo 6615 . . . . 5 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉onto𝐵)
53, 4syl 17 . . . 4 (𝜑𝐹:𝑉onto𝐵)
6 imasf1oxmet.r . . . 4 (𝜑𝑅𝑍)
7 eqid 2818 . . . 4 (dist‘𝑅) = (dist‘𝑅)
8 imasf1oxmet.d . . . 4 𝐷 = (dist‘𝑈)
91, 2, 5, 6, 7, 8imasdsfn 16775 . . 3 (𝜑𝐷 Fn (𝐵 × 𝐵))
101adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑈 = (𝐹s 𝑅))
112adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑉 = (Base‘𝑅))
123adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝐹:𝑉1-1-onto𝐵)
136adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑅𝑍)
14 imasf1oxmet.e . . . . . . . 8 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
15 imasf1oxmet.m . . . . . . . . 9 (𝜑𝐸 ∈ (∞Met‘𝑉))
1615adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝐸 ∈ (∞Met‘𝑉))
17 simprl 767 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑎𝑉)
18 simprr 769 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑏𝑉)
1910, 11, 12, 13, 14, 8, 16, 17, 18imasdsf1o 22911 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎)𝐷(𝐹𝑏)) = (𝑎𝐸𝑏))
20 xmetcl 22868 . . . . . . . . 9 ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑎𝑉𝑏𝑉) → (𝑎𝐸𝑏) ∈ ℝ*)
21203expb 1112 . . . . . . . 8 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝐸𝑏) ∈ ℝ*)
2215, 21sylan 580 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝐸𝑏) ∈ ℝ*)
2319, 22eqeltrd 2910 . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*)
2423ralrimivva 3188 . . . . 5 (𝜑 → ∀𝑎𝑉𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*)
25 f1ofn 6609 . . . . . . . . 9 (𝐹:𝑉1-1-onto𝐵𝐹 Fn 𝑉)
263, 25syl 17 . . . . . . . 8 (𝜑𝐹 Fn 𝑉)
27 oveq2 7153 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → ((𝐹𝑎)𝐷𝑦) = ((𝐹𝑎)𝐷(𝐹𝑏)))
2827eleq1d 2894 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → (((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*))
2928ralrn 6846 . . . . . . . 8 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ∀𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*))
3026, 29syl 17 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ∀𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*))
31 forn 6586 . . . . . . . . 9 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
325, 31syl 17 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐵)
3332raleqdv 3413 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ∀𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
3430, 33bitr3d 282 . . . . . 6 (𝜑 → (∀𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ* ↔ ∀𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
3534ralbidv 3194 . . . . 5 (𝜑 → (∀𝑎𝑉𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ* ↔ ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
3624, 35mpbid 233 . . . 4 (𝜑 → ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*)
37 oveq1 7152 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝑥𝐷𝑦) = ((𝐹𝑎)𝐷𝑦))
3837eleq1d 2894 . . . . . . . 8 (𝑥 = (𝐹𝑎) → ((𝑥𝐷𝑦) ∈ ℝ* ↔ ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
3938ralbidv 3194 . . . . . . 7 (𝑥 = (𝐹𝑎) → (∀𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔ ∀𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
4039ralrn 6846 . . . . . 6 (𝐹 Fn 𝑉 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔ ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
4126, 40syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔ ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
4232raleqdv 3413 . . . . 5 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ*))
4341, 42bitr3d 282 . . . 4 (𝜑 → (∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ*))
4436, 43mpbid 233 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ*)
45 ffnov 7267 . . 3 (𝐷:(𝐵 × 𝐵)⟶ℝ* ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ*))
469, 44, 45sylanbrc 583 . 2 (𝜑𝐷:(𝐵 × 𝐵)⟶ℝ*)
47 xmeteq0 22875 . . . . . . . 8 ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑎𝑉𝑏𝑉) → ((𝑎𝐸𝑏) = 0 ↔ 𝑎 = 𝑏))
4816, 17, 18, 47syl3anc 1363 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝑎𝐸𝑏) = 0 ↔ 𝑎 = 𝑏))
4919eqeq1d 2820 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝑎𝐸𝑏) = 0))
50 f1of1 6607 . . . . . . . . 9 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉1-1𝐵)
513, 50syl 17 . . . . . . . 8 (𝜑𝐹:𝑉1-1𝐵)
52 f1fveq 7011 . . . . . . . 8 ((𝐹:𝑉1-1𝐵 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏))
5351, 52sylan 580 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏))
5448, 49, 533bitr4d 312 . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)))
5516adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝐸 ∈ (∞Met‘𝑉))
56 simpr 485 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑐𝑉)
5717adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑎𝑉)
5818adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑏𝑉)
59 xmettri2 22877 . . . . . . . . . 10 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑐𝑉𝑎𝑉𝑏𝑉)) → (𝑎𝐸𝑏) ≤ ((𝑐𝐸𝑎) +𝑒 (𝑐𝐸𝑏)))
6055, 56, 57, 58, 59syl13anc 1364 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → (𝑎𝐸𝑏) ≤ ((𝑐𝐸𝑎) +𝑒 (𝑐𝐸𝑏)))
6119adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → ((𝐹𝑎)𝐷(𝐹𝑏)) = (𝑎𝐸𝑏))
6210adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑈 = (𝐹s 𝑅))
6311adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑉 = (Base‘𝑅))
6412adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝐹:𝑉1-1-onto𝐵)
6513adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑅𝑍)
6662, 63, 64, 65, 14, 8, 55, 56, 57imasdsf1o 22911 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → ((𝐹𝑐)𝐷(𝐹𝑎)) = (𝑐𝐸𝑎))
6762, 63, 64, 65, 14, 8, 55, 56, 58imasdsf1o 22911 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → ((𝐹𝑐)𝐷(𝐹𝑏)) = (𝑐𝐸𝑏))
6866, 67oveq12d 7163 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))) = ((𝑐𝐸𝑎) +𝑒 (𝑐𝐸𝑏)))
6960, 61, 683brtr4d 5089 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))))
7069ralrimiva 3179 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))))
71 oveq1 7152 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑐) → (𝑧𝐷(𝐹𝑎)) = ((𝐹𝑐)𝐷(𝐹𝑎)))
72 oveq1 7152 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑐) → (𝑧𝐷(𝐹𝑏)) = ((𝐹𝑐)𝐷(𝐹𝑏)))
7371, 72oveq12d 7163 . . . . . . . . . . . 12 (𝑧 = (𝐹𝑐) → ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) = (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))))
7473breq2d 5069 . . . . . . . . . . 11 (𝑧 = (𝐹𝑐) → (((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏)))))
7574ralrn 6846 . . . . . . . . . 10 (𝐹 Fn 𝑉 → (∀𝑧 ∈ ran 𝐹((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) ↔ ∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏)))))
7626, 75syl 17 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ ran 𝐹((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) ↔ ∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏)))))
7732raleqdv 3413 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ ran 𝐹((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
7876, 77bitr3d 282 . . . . . . . 8 (𝜑 → (∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
7978adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
8070, 79mpbid 233 . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))
8154, 80jca 512 . . . . 5 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
8281ralrimivva 3188 . . . 4 (𝜑 → ∀𝑎𝑉𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
8327eqeq1d 2820 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → (((𝐹𝑎)𝐷𝑦) = 0 ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) = 0))
84 eqeq2 2830 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → ((𝐹𝑎) = 𝑦 ↔ (𝐹𝑎) = (𝐹𝑏)))
8583, 84bibi12d 347 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ↔ (((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏))))
86 oveq2 7153 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑏) → (𝑧𝐷𝑦) = (𝑧𝐷(𝐹𝑏)))
8786oveq2d 7161 . . . . . . . . . . 11 (𝑦 = (𝐹𝑏) → ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))
8827, 87breq12d 5070 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → (((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)) ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
8988ralbidv 3194 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → (∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
9085, 89anbi12d 630 . . . . . . . 8 (𝑦 = (𝐹𝑏) → (((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))))
9190ralrn 6846 . . . . . . 7 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))))
9226, 91syl 17 . . . . . 6 (𝜑 → (∀𝑦 ∈ ran 𝐹((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))))
9332raleqdv 3413 . . . . . 6 (𝜑 → (∀𝑦 ∈ ran 𝐹((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
9492, 93bitr3d 282 . . . . 5 (𝜑 → (∀𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))) ↔ ∀𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
9594ralbidv 3194 . . . 4 (𝜑 → (∀𝑎𝑉𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))) ↔ ∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
9682, 95mpbid 233 . . 3 (𝜑 → ∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))))
9737eqeq1d 2820 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → ((𝑥𝐷𝑦) = 0 ↔ ((𝐹𝑎)𝐷𝑦) = 0))
98 eqeq1 2822 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝑥 = 𝑦 ↔ (𝐹𝑎) = 𝑦))
9997, 98bibi12d 347 . . . . . . . 8 (𝑥 = (𝐹𝑎) → (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ↔ (((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦)))
100 oveq2 7153 . . . . . . . . . . 11 (𝑥 = (𝐹𝑎) → (𝑧𝐷𝑥) = (𝑧𝐷(𝐹𝑎)))
101100oveq1d 7160 . . . . . . . . . 10 (𝑥 = (𝐹𝑎) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))
10237, 101breq12d 5070 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → ((𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))))
103102ralbidv 3194 . . . . . . . 8 (𝑥 = (𝐹𝑎) → (∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))))
10499, 103anbi12d 630 . . . . . . 7 (𝑥 = (𝐹𝑎) → ((((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
105104ralbidv 3194 . . . . . 6 (𝑥 = (𝐹𝑎) → (∀𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
106105ralrn 6846 . . . . 5 (𝐹 Fn 𝑉 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
10726, 106syl 17 . . . 4 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
10832raleqdv 3413 . . . 4 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
109107, 108bitr3d 282 . . 3 (𝜑 → (∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
11096, 109mpbid 233 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
11115elfvexd 6697 . . . 4 (𝜑𝑉 ∈ V)
112 fornex 7646 . . . 4 (𝑉 ∈ V → (𝐹:𝑉onto𝐵𝐵 ∈ V))
113111, 5, 112sylc 65 . . 3 (𝜑𝐵 ∈ V)
114 isxmet 22861 . . 3 (𝐵 ∈ V → (𝐷 ∈ (∞Met‘𝐵) ↔ (𝐷:(𝐵 × 𝐵)⟶ℝ* ∧ ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
115113, 114syl 17 . 2 (𝜑 → (𝐷 ∈ (∞Met‘𝐵) ↔ (𝐷:(𝐵 × 𝐵)⟶ℝ* ∧ ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
11646, 110, 115mpbir2and 709 1 (𝜑𝐷 ∈ (∞Met‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  Vcvv 3492   class class class wbr 5057   × cxp 5546  ran crn 5549  cres 5550   Fn wfn 6343  wf 6344  1-1wf1 6345  ontowfo 6346  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7145  0cc0 10525  *cxr 10662  cle 10664   +𝑒 cxad 12493  Basecbs 16471  distcds 16562  s cimas 16765  ∞Metcxmet 20458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-fz 12881  df-fzo 13022  df-seq 13358  df-hash 13679  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-0g 16703  df-gsum 16704  df-xrs 16763  df-imas 16769  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-xmet 20466
This theorem is referenced by:  imasf1omet  22913  xpsxmet  22917  imasf1obl  23025  imasf1oxms  23026
  Copyright terms: Public domain W3C validator