MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1oxmet Structured version   Visualization version   GIF version

Theorem imasf1oxmet 24261
Description: The image of an extended metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
imasf1oxmet.u (𝜑𝑈 = (𝐹s 𝑅))
imasf1oxmet.v (𝜑𝑉 = (Base‘𝑅))
imasf1oxmet.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasf1oxmet.r (𝜑𝑅𝑍)
imasf1oxmet.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
imasf1oxmet.d 𝐷 = (dist‘𝑈)
imasf1oxmet.m (𝜑𝐸 ∈ (∞Met‘𝑉))
Assertion
Ref Expression
imasf1oxmet (𝜑𝐷 ∈ (∞Met‘𝐵))

Proof of Theorem imasf1oxmet
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasf1oxmet.u . . . 4 (𝜑𝑈 = (𝐹s 𝑅))
2 imasf1oxmet.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 imasf1oxmet.f . . . . 5 (𝜑𝐹:𝑉1-1-onto𝐵)
4 f1ofo 6771 . . . . 5 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉onto𝐵)
53, 4syl 17 . . . 4 (𝜑𝐹:𝑉onto𝐵)
6 imasf1oxmet.r . . . 4 (𝜑𝑅𝑍)
7 eqid 2729 . . . 4 (dist‘𝑅) = (dist‘𝑅)
8 imasf1oxmet.d . . . 4 𝐷 = (dist‘𝑈)
91, 2, 5, 6, 7, 8imasdsfn 17418 . . 3 (𝜑𝐷 Fn (𝐵 × 𝐵))
101adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑈 = (𝐹s 𝑅))
112adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑉 = (Base‘𝑅))
123adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝐹:𝑉1-1-onto𝐵)
136adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑅𝑍)
14 imasf1oxmet.e . . . . . . . 8 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
15 imasf1oxmet.m . . . . . . . . 9 (𝜑𝐸 ∈ (∞Met‘𝑉))
1615adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝐸 ∈ (∞Met‘𝑉))
17 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑎𝑉)
18 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑏𝑉)
1910, 11, 12, 13, 14, 8, 16, 17, 18imasdsf1o 24260 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎)𝐷(𝐹𝑏)) = (𝑎𝐸𝑏))
20 xmetcl 24217 . . . . . . . . 9 ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑎𝑉𝑏𝑉) → (𝑎𝐸𝑏) ∈ ℝ*)
21203expb 1120 . . . . . . . 8 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝐸𝑏) ∈ ℝ*)
2215, 21sylan 580 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝐸𝑏) ∈ ℝ*)
2319, 22eqeltrd 2828 . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*)
2423ralrimivva 3172 . . . . 5 (𝜑 → ∀𝑎𝑉𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*)
25 f1ofn 6765 . . . . . . . . 9 (𝐹:𝑉1-1-onto𝐵𝐹 Fn 𝑉)
263, 25syl 17 . . . . . . . 8 (𝜑𝐹 Fn 𝑉)
27 oveq2 7357 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → ((𝐹𝑎)𝐷𝑦) = ((𝐹𝑎)𝐷(𝐹𝑏)))
2827eleq1d 2813 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → (((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*))
2928ralrn 7022 . . . . . . . 8 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ∀𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*))
3026, 29syl 17 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ∀𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*))
31 forn 6739 . . . . . . . . 9 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
325, 31syl 17 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐵)
3332raleqdv 3289 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ∀𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
3430, 33bitr3d 281 . . . . . 6 (𝜑 → (∀𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ* ↔ ∀𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
3534ralbidv 3152 . . . . 5 (𝜑 → (∀𝑎𝑉𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ* ↔ ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
3624, 35mpbid 232 . . . 4 (𝜑 → ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*)
37 oveq1 7356 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝑥𝐷𝑦) = ((𝐹𝑎)𝐷𝑦))
3837eleq1d 2813 . . . . . . . 8 (𝑥 = (𝐹𝑎) → ((𝑥𝐷𝑦) ∈ ℝ* ↔ ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
3938ralbidv 3152 . . . . . . 7 (𝑥 = (𝐹𝑎) → (∀𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔ ∀𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
4039ralrn 7022 . . . . . 6 (𝐹 Fn 𝑉 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔ ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
4126, 40syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔ ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
4232raleqdv 3289 . . . . 5 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ*))
4341, 42bitr3d 281 . . . 4 (𝜑 → (∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ*))
4436, 43mpbid 232 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ*)
45 ffnov 7475 . . 3 (𝐷:(𝐵 × 𝐵)⟶ℝ* ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ*))
469, 44, 45sylanbrc 583 . 2 (𝜑𝐷:(𝐵 × 𝐵)⟶ℝ*)
47 xmeteq0 24224 . . . . . . . 8 ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑎𝑉𝑏𝑉) → ((𝑎𝐸𝑏) = 0 ↔ 𝑎 = 𝑏))
4816, 17, 18, 47syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝑎𝐸𝑏) = 0 ↔ 𝑎 = 𝑏))
4919eqeq1d 2731 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝑎𝐸𝑏) = 0))
50 f1of1 6763 . . . . . . . . 9 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉1-1𝐵)
513, 50syl 17 . . . . . . . 8 (𝜑𝐹:𝑉1-1𝐵)
52 f1fveq 7199 . . . . . . . 8 ((𝐹:𝑉1-1𝐵 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏))
5351, 52sylan 580 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏))
5448, 49, 533bitr4d 311 . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)))
5516adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝐸 ∈ (∞Met‘𝑉))
56 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑐𝑉)
5717adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑎𝑉)
5818adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑏𝑉)
59 xmettri2 24226 . . . . . . . . . 10 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑐𝑉𝑎𝑉𝑏𝑉)) → (𝑎𝐸𝑏) ≤ ((𝑐𝐸𝑎) +𝑒 (𝑐𝐸𝑏)))
6055, 56, 57, 58, 59syl13anc 1374 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → (𝑎𝐸𝑏) ≤ ((𝑐𝐸𝑎) +𝑒 (𝑐𝐸𝑏)))
6119adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → ((𝐹𝑎)𝐷(𝐹𝑏)) = (𝑎𝐸𝑏))
6210adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑈 = (𝐹s 𝑅))
6311adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑉 = (Base‘𝑅))
6412adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝐹:𝑉1-1-onto𝐵)
6513adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑅𝑍)
6662, 63, 64, 65, 14, 8, 55, 56, 57imasdsf1o 24260 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → ((𝐹𝑐)𝐷(𝐹𝑎)) = (𝑐𝐸𝑎))
6762, 63, 64, 65, 14, 8, 55, 56, 58imasdsf1o 24260 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → ((𝐹𝑐)𝐷(𝐹𝑏)) = (𝑐𝐸𝑏))
6866, 67oveq12d 7367 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))) = ((𝑐𝐸𝑎) +𝑒 (𝑐𝐸𝑏)))
6960, 61, 683brtr4d 5124 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))))
7069ralrimiva 3121 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))))
71 oveq1 7356 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑐) → (𝑧𝐷(𝐹𝑎)) = ((𝐹𝑐)𝐷(𝐹𝑎)))
72 oveq1 7356 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑐) → (𝑧𝐷(𝐹𝑏)) = ((𝐹𝑐)𝐷(𝐹𝑏)))
7371, 72oveq12d 7367 . . . . . . . . . . . 12 (𝑧 = (𝐹𝑐) → ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) = (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))))
7473breq2d 5104 . . . . . . . . . . 11 (𝑧 = (𝐹𝑐) → (((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏)))))
7574ralrn 7022 . . . . . . . . . 10 (𝐹 Fn 𝑉 → (∀𝑧 ∈ ran 𝐹((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) ↔ ∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏)))))
7626, 75syl 17 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ ran 𝐹((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) ↔ ∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏)))))
7732raleqdv 3289 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ ran 𝐹((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
7876, 77bitr3d 281 . . . . . . . 8 (𝜑 → (∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
7978adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
8070, 79mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))
8154, 80jca 511 . . . . 5 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
8281ralrimivva 3172 . . . 4 (𝜑 → ∀𝑎𝑉𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
8327eqeq1d 2731 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → (((𝐹𝑎)𝐷𝑦) = 0 ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) = 0))
84 eqeq2 2741 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → ((𝐹𝑎) = 𝑦 ↔ (𝐹𝑎) = (𝐹𝑏)))
8583, 84bibi12d 345 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ↔ (((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏))))
86 oveq2 7357 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑏) → (𝑧𝐷𝑦) = (𝑧𝐷(𝐹𝑏)))
8786oveq2d 7365 . . . . . . . . . . 11 (𝑦 = (𝐹𝑏) → ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))
8827, 87breq12d 5105 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → (((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)) ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
8988ralbidv 3152 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → (∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
9085, 89anbi12d 632 . . . . . . . 8 (𝑦 = (𝐹𝑏) → (((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))))
9190ralrn 7022 . . . . . . 7 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))))
9226, 91syl 17 . . . . . 6 (𝜑 → (∀𝑦 ∈ ran 𝐹((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))))
9332raleqdv 3289 . . . . . 6 (𝜑 → (∀𝑦 ∈ ran 𝐹((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
9492, 93bitr3d 281 . . . . 5 (𝜑 → (∀𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))) ↔ ∀𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
9594ralbidv 3152 . . . 4 (𝜑 → (∀𝑎𝑉𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))) ↔ ∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
9682, 95mpbid 232 . . 3 (𝜑 → ∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))))
9737eqeq1d 2731 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → ((𝑥𝐷𝑦) = 0 ↔ ((𝐹𝑎)𝐷𝑦) = 0))
98 eqeq1 2733 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝑥 = 𝑦 ↔ (𝐹𝑎) = 𝑦))
9997, 98bibi12d 345 . . . . . . . 8 (𝑥 = (𝐹𝑎) → (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ↔ (((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦)))
100 oveq2 7357 . . . . . . . . . . 11 (𝑥 = (𝐹𝑎) → (𝑧𝐷𝑥) = (𝑧𝐷(𝐹𝑎)))
101100oveq1d 7364 . . . . . . . . . 10 (𝑥 = (𝐹𝑎) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))
10237, 101breq12d 5105 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → ((𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))))
103102ralbidv 3152 . . . . . . . 8 (𝑥 = (𝐹𝑎) → (∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))))
10499, 103anbi12d 632 . . . . . . 7 (𝑥 = (𝐹𝑎) → ((((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
105104ralbidv 3152 . . . . . 6 (𝑥 = (𝐹𝑎) → (∀𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
106105ralrn 7022 . . . . 5 (𝐹 Fn 𝑉 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
10726, 106syl 17 . . . 4 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
10832raleqdv 3289 . . . 4 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
109107, 108bitr3d 281 . . 3 (𝜑 → (∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
11096, 109mpbid 232 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
11115elfvexd 6859 . . . 4 (𝜑𝑉 ∈ V)
112 focdmex 7891 . . . 4 (𝑉 ∈ V → (𝐹:𝑉onto𝐵𝐵 ∈ V))
113111, 5, 112sylc 65 . . 3 (𝜑𝐵 ∈ V)
114 isxmet 24210 . . 3 (𝐵 ∈ V → (𝐷 ∈ (∞Met‘𝐵) ↔ (𝐷:(𝐵 × 𝐵)⟶ℝ* ∧ ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
115113, 114syl 17 . 2 (𝜑 → (𝐷 ∈ (∞Met‘𝐵) ↔ (𝐷:(𝐵 × 𝐵)⟶ℝ* ∧ ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
11646, 110, 115mpbir2and 713 1 (𝜑𝐷 ∈ (∞Met‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436   class class class wbr 5092   × cxp 5617  ran crn 5620  cres 5621   Fn wfn 6477  wf 6478  1-1wf1 6479  ontowfo 6480  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  0cc0 11009  *cxr 11148  cle 11150   +𝑒 cxad 13012  Basecbs 17120  distcds 17170  s cimas 17408  ∞Metcxmet 21246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-0g 17345  df-gsum 17346  df-xrs 17406  df-imas 17412  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-xmet 21254
This theorem is referenced by:  imasf1omet  24262  xpsxmet  24266  imasf1obl  24374  imasf1oxms  24375
  Copyright terms: Public domain W3C validator