MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1oxmet Structured version   Visualization version   GIF version

Theorem imasf1oxmet 24406
Description: The image of an extended metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
imasf1oxmet.u (𝜑𝑈 = (𝐹s 𝑅))
imasf1oxmet.v (𝜑𝑉 = (Base‘𝑅))
imasf1oxmet.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasf1oxmet.r (𝜑𝑅𝑍)
imasf1oxmet.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
imasf1oxmet.d 𝐷 = (dist‘𝑈)
imasf1oxmet.m (𝜑𝐸 ∈ (∞Met‘𝑉))
Assertion
Ref Expression
imasf1oxmet (𝜑𝐷 ∈ (∞Met‘𝐵))

Proof of Theorem imasf1oxmet
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasf1oxmet.u . . . 4 (𝜑𝑈 = (𝐹s 𝑅))
2 imasf1oxmet.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 imasf1oxmet.f . . . . 5 (𝜑𝐹:𝑉1-1-onto𝐵)
4 f1ofo 6869 . . . . 5 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉onto𝐵)
53, 4syl 17 . . . 4 (𝜑𝐹:𝑉onto𝐵)
6 imasf1oxmet.r . . . 4 (𝜑𝑅𝑍)
7 eqid 2740 . . . 4 (dist‘𝑅) = (dist‘𝑅)
8 imasf1oxmet.d . . . 4 𝐷 = (dist‘𝑈)
91, 2, 5, 6, 7, 8imasdsfn 17574 . . 3 (𝜑𝐷 Fn (𝐵 × 𝐵))
101adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑈 = (𝐹s 𝑅))
112adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑉 = (Base‘𝑅))
123adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝐹:𝑉1-1-onto𝐵)
136adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑅𝑍)
14 imasf1oxmet.e . . . . . . . 8 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
15 imasf1oxmet.m . . . . . . . . 9 (𝜑𝐸 ∈ (∞Met‘𝑉))
1615adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝐸 ∈ (∞Met‘𝑉))
17 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑎𝑉)
18 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑏𝑉)
1910, 11, 12, 13, 14, 8, 16, 17, 18imasdsf1o 24405 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎)𝐷(𝐹𝑏)) = (𝑎𝐸𝑏))
20 xmetcl 24362 . . . . . . . . 9 ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑎𝑉𝑏𝑉) → (𝑎𝐸𝑏) ∈ ℝ*)
21203expb 1120 . . . . . . . 8 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝐸𝑏) ∈ ℝ*)
2215, 21sylan 579 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝐸𝑏) ∈ ℝ*)
2319, 22eqeltrd 2844 . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*)
2423ralrimivva 3208 . . . . 5 (𝜑 → ∀𝑎𝑉𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*)
25 f1ofn 6863 . . . . . . . . 9 (𝐹:𝑉1-1-onto𝐵𝐹 Fn 𝑉)
263, 25syl 17 . . . . . . . 8 (𝜑𝐹 Fn 𝑉)
27 oveq2 7456 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → ((𝐹𝑎)𝐷𝑦) = ((𝐹𝑎)𝐷(𝐹𝑏)))
2827eleq1d 2829 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → (((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*))
2928ralrn 7122 . . . . . . . 8 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ∀𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*))
3026, 29syl 17 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ∀𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*))
31 forn 6837 . . . . . . . . 9 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
325, 31syl 17 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐵)
3332raleqdv 3334 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ∀𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
3430, 33bitr3d 281 . . . . . 6 (𝜑 → (∀𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ* ↔ ∀𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
3534ralbidv 3184 . . . . 5 (𝜑 → (∀𝑎𝑉𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ* ↔ ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
3624, 35mpbid 232 . . . 4 (𝜑 → ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*)
37 oveq1 7455 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝑥𝐷𝑦) = ((𝐹𝑎)𝐷𝑦))
3837eleq1d 2829 . . . . . . . 8 (𝑥 = (𝐹𝑎) → ((𝑥𝐷𝑦) ∈ ℝ* ↔ ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
3938ralbidv 3184 . . . . . . 7 (𝑥 = (𝐹𝑎) → (∀𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔ ∀𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
4039ralrn 7122 . . . . . 6 (𝐹 Fn 𝑉 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔ ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
4126, 40syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔ ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
4232raleqdv 3334 . . . . 5 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ*))
4341, 42bitr3d 281 . . . 4 (𝜑 → (∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ*))
4436, 43mpbid 232 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ*)
45 ffnov 7576 . . 3 (𝐷:(𝐵 × 𝐵)⟶ℝ* ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ*))
469, 44, 45sylanbrc 582 . 2 (𝜑𝐷:(𝐵 × 𝐵)⟶ℝ*)
47 xmeteq0 24369 . . . . . . . 8 ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑎𝑉𝑏𝑉) → ((𝑎𝐸𝑏) = 0 ↔ 𝑎 = 𝑏))
4816, 17, 18, 47syl3anc 1371 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝑎𝐸𝑏) = 0 ↔ 𝑎 = 𝑏))
4919eqeq1d 2742 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝑎𝐸𝑏) = 0))
50 f1of1 6861 . . . . . . . . 9 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉1-1𝐵)
513, 50syl 17 . . . . . . . 8 (𝜑𝐹:𝑉1-1𝐵)
52 f1fveq 7299 . . . . . . . 8 ((𝐹:𝑉1-1𝐵 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏))
5351, 52sylan 579 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏))
5448, 49, 533bitr4d 311 . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)))
5516adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝐸 ∈ (∞Met‘𝑉))
56 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑐𝑉)
5717adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑎𝑉)
5818adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑏𝑉)
59 xmettri2 24371 . . . . . . . . . 10 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑐𝑉𝑎𝑉𝑏𝑉)) → (𝑎𝐸𝑏) ≤ ((𝑐𝐸𝑎) +𝑒 (𝑐𝐸𝑏)))
6055, 56, 57, 58, 59syl13anc 1372 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → (𝑎𝐸𝑏) ≤ ((𝑐𝐸𝑎) +𝑒 (𝑐𝐸𝑏)))
6119adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → ((𝐹𝑎)𝐷(𝐹𝑏)) = (𝑎𝐸𝑏))
6210adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑈 = (𝐹s 𝑅))
6311adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑉 = (Base‘𝑅))
6412adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝐹:𝑉1-1-onto𝐵)
6513adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑅𝑍)
6662, 63, 64, 65, 14, 8, 55, 56, 57imasdsf1o 24405 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → ((𝐹𝑐)𝐷(𝐹𝑎)) = (𝑐𝐸𝑎))
6762, 63, 64, 65, 14, 8, 55, 56, 58imasdsf1o 24405 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → ((𝐹𝑐)𝐷(𝐹𝑏)) = (𝑐𝐸𝑏))
6866, 67oveq12d 7466 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))) = ((𝑐𝐸𝑎) +𝑒 (𝑐𝐸𝑏)))
6960, 61, 683brtr4d 5198 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))))
7069ralrimiva 3152 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))))
71 oveq1 7455 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑐) → (𝑧𝐷(𝐹𝑎)) = ((𝐹𝑐)𝐷(𝐹𝑎)))
72 oveq1 7455 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑐) → (𝑧𝐷(𝐹𝑏)) = ((𝐹𝑐)𝐷(𝐹𝑏)))
7371, 72oveq12d 7466 . . . . . . . . . . . 12 (𝑧 = (𝐹𝑐) → ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) = (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))))
7473breq2d 5178 . . . . . . . . . . 11 (𝑧 = (𝐹𝑐) → (((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏)))))
7574ralrn 7122 . . . . . . . . . 10 (𝐹 Fn 𝑉 → (∀𝑧 ∈ ran 𝐹((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) ↔ ∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏)))))
7626, 75syl 17 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ ran 𝐹((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) ↔ ∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏)))))
7732raleqdv 3334 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ ran 𝐹((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
7876, 77bitr3d 281 . . . . . . . 8 (𝜑 → (∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
7978adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
8070, 79mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))
8154, 80jca 511 . . . . 5 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
8281ralrimivva 3208 . . . 4 (𝜑 → ∀𝑎𝑉𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
8327eqeq1d 2742 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → (((𝐹𝑎)𝐷𝑦) = 0 ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) = 0))
84 eqeq2 2752 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → ((𝐹𝑎) = 𝑦 ↔ (𝐹𝑎) = (𝐹𝑏)))
8583, 84bibi12d 345 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ↔ (((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏))))
86 oveq2 7456 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑏) → (𝑧𝐷𝑦) = (𝑧𝐷(𝐹𝑏)))
8786oveq2d 7464 . . . . . . . . . . 11 (𝑦 = (𝐹𝑏) → ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))
8827, 87breq12d 5179 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → (((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)) ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
8988ralbidv 3184 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → (∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
9085, 89anbi12d 631 . . . . . . . 8 (𝑦 = (𝐹𝑏) → (((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))))
9190ralrn 7122 . . . . . . 7 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))))
9226, 91syl 17 . . . . . 6 (𝜑 → (∀𝑦 ∈ ran 𝐹((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))))
9332raleqdv 3334 . . . . . 6 (𝜑 → (∀𝑦 ∈ ran 𝐹((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
9492, 93bitr3d 281 . . . . 5 (𝜑 → (∀𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))) ↔ ∀𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
9594ralbidv 3184 . . . 4 (𝜑 → (∀𝑎𝑉𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))) ↔ ∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
9682, 95mpbid 232 . . 3 (𝜑 → ∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))))
9737eqeq1d 2742 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → ((𝑥𝐷𝑦) = 0 ↔ ((𝐹𝑎)𝐷𝑦) = 0))
98 eqeq1 2744 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝑥 = 𝑦 ↔ (𝐹𝑎) = 𝑦))
9997, 98bibi12d 345 . . . . . . . 8 (𝑥 = (𝐹𝑎) → (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ↔ (((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦)))
100 oveq2 7456 . . . . . . . . . . 11 (𝑥 = (𝐹𝑎) → (𝑧𝐷𝑥) = (𝑧𝐷(𝐹𝑎)))
101100oveq1d 7463 . . . . . . . . . 10 (𝑥 = (𝐹𝑎) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))
10237, 101breq12d 5179 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → ((𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))))
103102ralbidv 3184 . . . . . . . 8 (𝑥 = (𝐹𝑎) → (∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))))
10499, 103anbi12d 631 . . . . . . 7 (𝑥 = (𝐹𝑎) → ((((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
105104ralbidv 3184 . . . . . 6 (𝑥 = (𝐹𝑎) → (∀𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
106105ralrn 7122 . . . . 5 (𝐹 Fn 𝑉 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
10726, 106syl 17 . . . 4 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
10832raleqdv 3334 . . . 4 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
109107, 108bitr3d 281 . . 3 (𝜑 → (∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
11096, 109mpbid 232 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
11115elfvexd 6959 . . . 4 (𝜑𝑉 ∈ V)
112 focdmex 7996 . . . 4 (𝑉 ∈ V → (𝐹:𝑉onto𝐵𝐵 ∈ V))
113111, 5, 112sylc 65 . . 3 (𝜑𝐵 ∈ V)
114 isxmet 24355 . . 3 (𝐵 ∈ V → (𝐷 ∈ (∞Met‘𝐵) ↔ (𝐷:(𝐵 × 𝐵)⟶ℝ* ∧ ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
115113, 114syl 17 . 2 (𝜑 → (𝐷 ∈ (∞Met‘𝐵) ↔ (𝐷:(𝐵 × 𝐵)⟶ℝ* ∧ ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
11646, 110, 115mpbir2and 712 1 (𝜑𝐷 ∈ (∞Met‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488   class class class wbr 5166   × cxp 5698  ran crn 5701  cres 5702   Fn wfn 6568  wf 6569  1-1wf1 6570  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  0cc0 11184  *cxr 11323  cle 11325   +𝑒 cxad 13173  Basecbs 17258  distcds 17320  s cimas 17564  ∞Metcxmet 21372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-0g 17501  df-gsum 17502  df-xrs 17562  df-imas 17568  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-xmet 21380
This theorem is referenced by:  imasf1omet  24407  xpsxmet  24411  imasf1obl  24522  imasf1oxms  24523
  Copyright terms: Public domain W3C validator