MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1oxmet Structured version   Visualization version   GIF version

Theorem imasf1oxmet 22508
Description: The image of an extended metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
imasf1oxmet.u (𝜑𝑈 = (𝐹s 𝑅))
imasf1oxmet.v (𝜑𝑉 = (Base‘𝑅))
imasf1oxmet.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasf1oxmet.r (𝜑𝑅𝑍)
imasf1oxmet.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
imasf1oxmet.d 𝐷 = (dist‘𝑈)
imasf1oxmet.m (𝜑𝐸 ∈ (∞Met‘𝑉))
Assertion
Ref Expression
imasf1oxmet (𝜑𝐷 ∈ (∞Met‘𝐵))

Proof of Theorem imasf1oxmet
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasf1oxmet.u . . . 4 (𝜑𝑈 = (𝐹s 𝑅))
2 imasf1oxmet.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 imasf1oxmet.f . . . . 5 (𝜑𝐹:𝑉1-1-onto𝐵)
4 f1ofo 6363 . . . . 5 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉onto𝐵)
53, 4syl 17 . . . 4 (𝜑𝐹:𝑉onto𝐵)
6 imasf1oxmet.r . . . 4 (𝜑𝑅𝑍)
7 eqid 2799 . . . 4 (dist‘𝑅) = (dist‘𝑅)
8 imasf1oxmet.d . . . 4 𝐷 = (dist‘𝑈)
91, 2, 5, 6, 7, 8imasdsfn 16489 . . 3 (𝜑𝐷 Fn (𝐵 × 𝐵))
101adantr 473 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑈 = (𝐹s 𝑅))
112adantr 473 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑉 = (Base‘𝑅))
123adantr 473 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝐹:𝑉1-1-onto𝐵)
136adantr 473 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑅𝑍)
14 imasf1oxmet.e . . . . . . . 8 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
15 imasf1oxmet.m . . . . . . . . 9 (𝜑𝐸 ∈ (∞Met‘𝑉))
1615adantr 473 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝐸 ∈ (∞Met‘𝑉))
17 simprl 788 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑎𝑉)
18 simprr 790 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑏𝑉)
1910, 11, 12, 13, 14, 8, 16, 17, 18imasdsf1o 22507 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎)𝐷(𝐹𝑏)) = (𝑎𝐸𝑏))
20 xmetcl 22464 . . . . . . . . 9 ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑎𝑉𝑏𝑉) → (𝑎𝐸𝑏) ∈ ℝ*)
21203expb 1150 . . . . . . . 8 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝐸𝑏) ∈ ℝ*)
2215, 21sylan 576 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝐸𝑏) ∈ ℝ*)
2319, 22eqeltrd 2878 . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*)
2423ralrimivva 3152 . . . . 5 (𝜑 → ∀𝑎𝑉𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*)
25 f1ofn 6357 . . . . . . . . 9 (𝐹:𝑉1-1-onto𝐵𝐹 Fn 𝑉)
263, 25syl 17 . . . . . . . 8 (𝜑𝐹 Fn 𝑉)
27 oveq2 6886 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → ((𝐹𝑎)𝐷𝑦) = ((𝐹𝑎)𝐷(𝐹𝑏)))
2827eleq1d 2863 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → (((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*))
2928ralrn 6588 . . . . . . . 8 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ∀𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*))
3026, 29syl 17 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ∀𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*))
31 forn 6334 . . . . . . . . 9 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
325, 31syl 17 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐵)
3332raleqdv 3327 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ∀𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
3430, 33bitr3d 273 . . . . . 6 (𝜑 → (∀𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ* ↔ ∀𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
3534ralbidv 3167 . . . . 5 (𝜑 → (∀𝑎𝑉𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ* ↔ ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
3624, 35mpbid 224 . . . 4 (𝜑 → ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*)
37 oveq1 6885 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝑥𝐷𝑦) = ((𝐹𝑎)𝐷𝑦))
3837eleq1d 2863 . . . . . . . 8 (𝑥 = (𝐹𝑎) → ((𝑥𝐷𝑦) ∈ ℝ* ↔ ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
3938ralbidv 3167 . . . . . . 7 (𝑥 = (𝐹𝑎) → (∀𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔ ∀𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
4039ralrn 6588 . . . . . 6 (𝐹 Fn 𝑉 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔ ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
4126, 40syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔ ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
4232raleqdv 3327 . . . . 5 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ*))
4341, 42bitr3d 273 . . . 4 (𝜑 → (∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ*))
4436, 43mpbid 224 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ*)
45 ffnov 6998 . . 3 (𝐷:(𝐵 × 𝐵)⟶ℝ* ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ*))
469, 44, 45sylanbrc 579 . 2 (𝜑𝐷:(𝐵 × 𝐵)⟶ℝ*)
47 xmeteq0 22471 . . . . . . . 8 ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑎𝑉𝑏𝑉) → ((𝑎𝐸𝑏) = 0 ↔ 𝑎 = 𝑏))
4816, 17, 18, 47syl3anc 1491 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝑎𝐸𝑏) = 0 ↔ 𝑎 = 𝑏))
4919eqeq1d 2801 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝑎𝐸𝑏) = 0))
50 f1of1 6355 . . . . . . . . 9 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉1-1𝐵)
513, 50syl 17 . . . . . . . 8 (𝜑𝐹:𝑉1-1𝐵)
52 f1fveq 6747 . . . . . . . 8 ((𝐹:𝑉1-1𝐵 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏))
5351, 52sylan 576 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏))
5448, 49, 533bitr4d 303 . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)))
5516adantr 473 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝐸 ∈ (∞Met‘𝑉))
56 simpr 478 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑐𝑉)
5717adantr 473 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑎𝑉)
5818adantr 473 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑏𝑉)
59 xmettri2 22473 . . . . . . . . . 10 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑐𝑉𝑎𝑉𝑏𝑉)) → (𝑎𝐸𝑏) ≤ ((𝑐𝐸𝑎) +𝑒 (𝑐𝐸𝑏)))
6055, 56, 57, 58, 59syl13anc 1492 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → (𝑎𝐸𝑏) ≤ ((𝑐𝐸𝑎) +𝑒 (𝑐𝐸𝑏)))
6119adantr 473 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → ((𝐹𝑎)𝐷(𝐹𝑏)) = (𝑎𝐸𝑏))
6210adantr 473 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑈 = (𝐹s 𝑅))
6311adantr 473 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑉 = (Base‘𝑅))
6412adantr 473 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝐹:𝑉1-1-onto𝐵)
6513adantr 473 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑅𝑍)
6662, 63, 64, 65, 14, 8, 55, 56, 57imasdsf1o 22507 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → ((𝐹𝑐)𝐷(𝐹𝑎)) = (𝑐𝐸𝑎))
6762, 63, 64, 65, 14, 8, 55, 56, 58imasdsf1o 22507 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → ((𝐹𝑐)𝐷(𝐹𝑏)) = (𝑐𝐸𝑏))
6866, 67oveq12d 6896 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))) = ((𝑐𝐸𝑎) +𝑒 (𝑐𝐸𝑏)))
6960, 61, 683brtr4d 4875 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))))
7069ralrimiva 3147 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))))
71 oveq1 6885 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑐) → (𝑧𝐷(𝐹𝑎)) = ((𝐹𝑐)𝐷(𝐹𝑎)))
72 oveq1 6885 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑐) → (𝑧𝐷(𝐹𝑏)) = ((𝐹𝑐)𝐷(𝐹𝑏)))
7371, 72oveq12d 6896 . . . . . . . . . . . 12 (𝑧 = (𝐹𝑐) → ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) = (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))))
7473breq2d 4855 . . . . . . . . . . 11 (𝑧 = (𝐹𝑐) → (((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏)))))
7574ralrn 6588 . . . . . . . . . 10 (𝐹 Fn 𝑉 → (∀𝑧 ∈ ran 𝐹((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) ↔ ∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏)))))
7626, 75syl 17 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ ran 𝐹((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) ↔ ∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏)))))
7732raleqdv 3327 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ ran 𝐹((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
7876, 77bitr3d 273 . . . . . . . 8 (𝜑 → (∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
7978adantr 473 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
8070, 79mpbid 224 . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))
8154, 80jca 508 . . . . 5 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
8281ralrimivva 3152 . . . 4 (𝜑 → ∀𝑎𝑉𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
8327eqeq1d 2801 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → (((𝐹𝑎)𝐷𝑦) = 0 ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) = 0))
84 eqeq2 2810 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → ((𝐹𝑎) = 𝑦 ↔ (𝐹𝑎) = (𝐹𝑏)))
8583, 84bibi12d 337 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ↔ (((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏))))
86 oveq2 6886 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑏) → (𝑧𝐷𝑦) = (𝑧𝐷(𝐹𝑏)))
8786oveq2d 6894 . . . . . . . . . . 11 (𝑦 = (𝐹𝑏) → ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))
8827, 87breq12d 4856 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → (((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)) ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
8988ralbidv 3167 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → (∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
9085, 89anbi12d 625 . . . . . . . 8 (𝑦 = (𝐹𝑏) → (((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))))
9190ralrn 6588 . . . . . . 7 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))))
9226, 91syl 17 . . . . . 6 (𝜑 → (∀𝑦 ∈ ran 𝐹((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))))
9332raleqdv 3327 . . . . . 6 (𝜑 → (∀𝑦 ∈ ran 𝐹((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
9492, 93bitr3d 273 . . . . 5 (𝜑 → (∀𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))) ↔ ∀𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
9594ralbidv 3167 . . . 4 (𝜑 → (∀𝑎𝑉𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))) ↔ ∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
9682, 95mpbid 224 . . 3 (𝜑 → ∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))))
9737eqeq1d 2801 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → ((𝑥𝐷𝑦) = 0 ↔ ((𝐹𝑎)𝐷𝑦) = 0))
98 eqeq1 2803 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝑥 = 𝑦 ↔ (𝐹𝑎) = 𝑦))
9997, 98bibi12d 337 . . . . . . . 8 (𝑥 = (𝐹𝑎) → (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ↔ (((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦)))
100 oveq2 6886 . . . . . . . . . . 11 (𝑥 = (𝐹𝑎) → (𝑧𝐷𝑥) = (𝑧𝐷(𝐹𝑎)))
101100oveq1d 6893 . . . . . . . . . 10 (𝑥 = (𝐹𝑎) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))
10237, 101breq12d 4856 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → ((𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))))
103102ralbidv 3167 . . . . . . . 8 (𝑥 = (𝐹𝑎) → (∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))))
10499, 103anbi12d 625 . . . . . . 7 (𝑥 = (𝐹𝑎) → ((((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
105104ralbidv 3167 . . . . . 6 (𝑥 = (𝐹𝑎) → (∀𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
106105ralrn 6588 . . . . 5 (𝐹 Fn 𝑉 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
10726, 106syl 17 . . . 4 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
10832raleqdv 3327 . . . 4 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
109107, 108bitr3d 273 . . 3 (𝜑 → (∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
11096, 109mpbid 224 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
11115elfvexd 6446 . . . 4 (𝜑𝑉 ∈ V)
112 fornex 7370 . . . 4 (𝑉 ∈ V → (𝐹:𝑉onto𝐵𝐵 ∈ V))
113111, 5, 112sylc 65 . . 3 (𝜑𝐵 ∈ V)
114 isxmet 22457 . . 3 (𝐵 ∈ V → (𝐷 ∈ (∞Met‘𝐵) ↔ (𝐷:(𝐵 × 𝐵)⟶ℝ* ∧ ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
115113, 114syl 17 . 2 (𝜑 → (𝐷 ∈ (∞Met‘𝐵) ↔ (𝐷:(𝐵 × 𝐵)⟶ℝ* ∧ ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
11646, 110, 115mpbir2and 705 1 (𝜑𝐷 ∈ (∞Met‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wral 3089  Vcvv 3385   class class class wbr 4843   × cxp 5310  ran crn 5313  cres 5314   Fn wfn 6096  wf 6097  1-1wf1 6098  ontowfo 6099  1-1-ontowf1o 6100  cfv 6101  (class class class)co 6878  0cc0 10224  *cxr 10362  cle 10364   +𝑒 cxad 12191  Basecbs 16184  distcds 16276  s cimas 16479  ∞Metcxmet 20053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-om 7300  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-rp 12075  df-xneg 12193  df-xadd 12194  df-xmul 12195  df-fz 12581  df-fzo 12721  df-seq 13056  df-hash 13371  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-sca 16283  df-vsca 16284  df-ip 16285  df-tset 16286  df-ple 16287  df-ds 16289  df-0g 16417  df-gsum 16418  df-xrs 16477  df-imas 16483  df-mre 16561  df-mrc 16562  df-acs 16564  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-submnd 17651  df-mulg 17857  df-cntz 18062  df-cmn 18510  df-xmet 20061
This theorem is referenced by:  imasf1omet  22509  xpsxmet  22513  imasf1obl  22621  imasf1oxms  22622
  Copyright terms: Public domain W3C validator