MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1oxmet Structured version   Visualization version   GIF version

Theorem imasf1oxmet 23436
Description: The image of an extended metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
imasf1oxmet.u (𝜑𝑈 = (𝐹s 𝑅))
imasf1oxmet.v (𝜑𝑉 = (Base‘𝑅))
imasf1oxmet.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasf1oxmet.r (𝜑𝑅𝑍)
imasf1oxmet.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
imasf1oxmet.d 𝐷 = (dist‘𝑈)
imasf1oxmet.m (𝜑𝐸 ∈ (∞Met‘𝑉))
Assertion
Ref Expression
imasf1oxmet (𝜑𝐷 ∈ (∞Met‘𝐵))

Proof of Theorem imasf1oxmet
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasf1oxmet.u . . . 4 (𝜑𝑈 = (𝐹s 𝑅))
2 imasf1oxmet.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 imasf1oxmet.f . . . . 5 (𝜑𝐹:𝑉1-1-onto𝐵)
4 f1ofo 6707 . . . . 5 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉onto𝐵)
53, 4syl 17 . . . 4 (𝜑𝐹:𝑉onto𝐵)
6 imasf1oxmet.r . . . 4 (𝜑𝑅𝑍)
7 eqid 2738 . . . 4 (dist‘𝑅) = (dist‘𝑅)
8 imasf1oxmet.d . . . 4 𝐷 = (dist‘𝑈)
91, 2, 5, 6, 7, 8imasdsfn 17142 . . 3 (𝜑𝐷 Fn (𝐵 × 𝐵))
101adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑈 = (𝐹s 𝑅))
112adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑉 = (Base‘𝑅))
123adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝐹:𝑉1-1-onto𝐵)
136adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑅𝑍)
14 imasf1oxmet.e . . . . . . . 8 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
15 imasf1oxmet.m . . . . . . . . 9 (𝜑𝐸 ∈ (∞Met‘𝑉))
1615adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝐸 ∈ (∞Met‘𝑉))
17 simprl 767 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑎𝑉)
18 simprr 769 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → 𝑏𝑉)
1910, 11, 12, 13, 14, 8, 16, 17, 18imasdsf1o 23435 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎)𝐷(𝐹𝑏)) = (𝑎𝐸𝑏))
20 xmetcl 23392 . . . . . . . . 9 ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑎𝑉𝑏𝑉) → (𝑎𝐸𝑏) ∈ ℝ*)
21203expb 1118 . . . . . . . 8 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝐸𝑏) ∈ ℝ*)
2215, 21sylan 579 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝐸𝑏) ∈ ℝ*)
2319, 22eqeltrd 2839 . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*)
2423ralrimivva 3114 . . . . 5 (𝜑 → ∀𝑎𝑉𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*)
25 f1ofn 6701 . . . . . . . . 9 (𝐹:𝑉1-1-onto𝐵𝐹 Fn 𝑉)
263, 25syl 17 . . . . . . . 8 (𝜑𝐹 Fn 𝑉)
27 oveq2 7263 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → ((𝐹𝑎)𝐷𝑦) = ((𝐹𝑎)𝐷(𝐹𝑏)))
2827eleq1d 2823 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → (((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*))
2928ralrn 6946 . . . . . . . 8 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ∀𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*))
3026, 29syl 17 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ∀𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ*))
31 forn 6675 . . . . . . . . 9 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
325, 31syl 17 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐵)
3332raleqdv 3339 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ∀𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
3430, 33bitr3d 280 . . . . . 6 (𝜑 → (∀𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ* ↔ ∀𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
3534ralbidv 3120 . . . . 5 (𝜑 → (∀𝑎𝑉𝑏𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ∈ ℝ* ↔ ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
3624, 35mpbid 231 . . . 4 (𝜑 → ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*)
37 oveq1 7262 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝑥𝐷𝑦) = ((𝐹𝑎)𝐷𝑦))
3837eleq1d 2823 . . . . . . . 8 (𝑥 = (𝐹𝑎) → ((𝑥𝐷𝑦) ∈ ℝ* ↔ ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
3938ralbidv 3120 . . . . . . 7 (𝑥 = (𝐹𝑎) → (∀𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔ ∀𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
4039ralrn 6946 . . . . . 6 (𝐹 Fn 𝑉 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔ ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
4126, 40syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔ ∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ*))
4232raleqdv 3339 . . . . 5 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ*))
4341, 42bitr3d 280 . . . 4 (𝜑 → (∀𝑎𝑉𝑦𝐵 ((𝐹𝑎)𝐷𝑦) ∈ ℝ* ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ*))
4436, 43mpbid 231 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ*)
45 ffnov 7379 . . 3 (𝐷:(𝐵 × 𝐵)⟶ℝ* ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐷𝑦) ∈ ℝ*))
469, 44, 45sylanbrc 582 . 2 (𝜑𝐷:(𝐵 × 𝐵)⟶ℝ*)
47 xmeteq0 23399 . . . . . . . 8 ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑎𝑉𝑏𝑉) → ((𝑎𝐸𝑏) = 0 ↔ 𝑎 = 𝑏))
4816, 17, 18, 47syl3anc 1369 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝑎𝐸𝑏) = 0 ↔ 𝑎 = 𝑏))
4919eqeq1d 2740 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝑎𝐸𝑏) = 0))
50 f1of1 6699 . . . . . . . . 9 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉1-1𝐵)
513, 50syl 17 . . . . . . . 8 (𝜑𝐹:𝑉1-1𝐵)
52 f1fveq 7116 . . . . . . . 8 ((𝐹:𝑉1-1𝐵 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏))
5351, 52sylan 579 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏))
5448, 49, 533bitr4d 310 . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)))
5516adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝐸 ∈ (∞Met‘𝑉))
56 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑐𝑉)
5717adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑎𝑉)
5818adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑏𝑉)
59 xmettri2 23401 . . . . . . . . . 10 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑐𝑉𝑎𝑉𝑏𝑉)) → (𝑎𝐸𝑏) ≤ ((𝑐𝐸𝑎) +𝑒 (𝑐𝐸𝑏)))
6055, 56, 57, 58, 59syl13anc 1370 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → (𝑎𝐸𝑏) ≤ ((𝑐𝐸𝑎) +𝑒 (𝑐𝐸𝑏)))
6119adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → ((𝐹𝑎)𝐷(𝐹𝑏)) = (𝑎𝐸𝑏))
6210adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑈 = (𝐹s 𝑅))
6311adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑉 = (Base‘𝑅))
6412adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝐹:𝑉1-1-onto𝐵)
6513adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → 𝑅𝑍)
6662, 63, 64, 65, 14, 8, 55, 56, 57imasdsf1o 23435 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → ((𝐹𝑐)𝐷(𝐹𝑎)) = (𝑐𝐸𝑎))
6762, 63, 64, 65, 14, 8, 55, 56, 58imasdsf1o 23435 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → ((𝐹𝑐)𝐷(𝐹𝑏)) = (𝑐𝐸𝑏))
6866, 67oveq12d 7273 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))) = ((𝑐𝐸𝑎) +𝑒 (𝑐𝐸𝑏)))
6960, 61, 683brtr4d 5102 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))))
7069ralrimiva 3107 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))))
71 oveq1 7262 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑐) → (𝑧𝐷(𝐹𝑎)) = ((𝐹𝑐)𝐷(𝐹𝑎)))
72 oveq1 7262 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑐) → (𝑧𝐷(𝐹𝑏)) = ((𝐹𝑐)𝐷(𝐹𝑏)))
7371, 72oveq12d 7273 . . . . . . . . . . . 12 (𝑧 = (𝐹𝑐) → ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) = (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))))
7473breq2d 5082 . . . . . . . . . . 11 (𝑧 = (𝐹𝑐) → (((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏)))))
7574ralrn 6946 . . . . . . . . . 10 (𝐹 Fn 𝑉 → (∀𝑧 ∈ ran 𝐹((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) ↔ ∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏)))))
7626, 75syl 17 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ ran 𝐹((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) ↔ ∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏)))))
7732raleqdv 3339 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ ran 𝐹((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
7876, 77bitr3d 280 . . . . . . . 8 (𝜑 → (∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
7978adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (∀𝑐𝑉 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ (((𝐹𝑐)𝐷(𝐹𝑎)) +𝑒 ((𝐹𝑐)𝐷(𝐹𝑏))) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
8070, 79mpbid 231 . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))
8154, 80jca 511 . . . . 5 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
8281ralrimivva 3114 . . . 4 (𝜑 → ∀𝑎𝑉𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
8327eqeq1d 2740 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → (((𝐹𝑎)𝐷𝑦) = 0 ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) = 0))
84 eqeq2 2750 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → ((𝐹𝑎) = 𝑦 ↔ (𝐹𝑎) = (𝐹𝑏)))
8583, 84bibi12d 345 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ↔ (((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏))))
86 oveq2 7263 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑏) → (𝑧𝐷𝑦) = (𝑧𝐷(𝐹𝑏)))
8786oveq2d 7271 . . . . . . . . . . 11 (𝑦 = (𝐹𝑏) → ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))
8827, 87breq12d 5083 . . . . . . . . . 10 (𝑦 = (𝐹𝑏) → (((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)) ↔ ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
8988ralbidv 3120 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → (∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))))
9085, 89anbi12d 630 . . . . . . . 8 (𝑦 = (𝐹𝑏) → (((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))))
9190ralrn 6946 . . . . . . 7 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))))
9226, 91syl 17 . . . . . 6 (𝜑 → (∀𝑦 ∈ ran 𝐹((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏))))))
9332raleqdv 3339 . . . . . 6 (𝜑 → (∀𝑦 ∈ ran 𝐹((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
9492, 93bitr3d 280 . . . . 5 (𝜑 → (∀𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))) ↔ ∀𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
9594ralbidv 3120 . . . 4 (𝜑 → (∀𝑎𝑉𝑏𝑉 ((((𝐹𝑎)𝐷(𝐹𝑏)) = 0 ↔ (𝐹𝑎) = (𝐹𝑏)) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷(𝐹𝑏)) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷(𝐹𝑏)))) ↔ ∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
9682, 95mpbid 231 . . 3 (𝜑 → ∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))))
9737eqeq1d 2740 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → ((𝑥𝐷𝑦) = 0 ↔ ((𝐹𝑎)𝐷𝑦) = 0))
98 eqeq1 2742 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝑥 = 𝑦 ↔ (𝐹𝑎) = 𝑦))
9997, 98bibi12d 345 . . . . . . . 8 (𝑥 = (𝐹𝑎) → (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ↔ (((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦)))
100 oveq2 7263 . . . . . . . . . . 11 (𝑥 = (𝐹𝑎) → (𝑧𝐷𝑥) = (𝑧𝐷(𝐹𝑎)))
101100oveq1d 7270 . . . . . . . . . 10 (𝑥 = (𝐹𝑎) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))
10237, 101breq12d 5083 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → ((𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))))
103102ralbidv 3120 . . . . . . . 8 (𝑥 = (𝐹𝑎) → (∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))))
10499, 103anbi12d 630 . . . . . . 7 (𝑥 = (𝐹𝑎) → ((((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
105104ralbidv 3120 . . . . . 6 (𝑥 = (𝐹𝑎) → (∀𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
106105ralrn 6946 . . . . 5 (𝐹 Fn 𝑉 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
10726, 106syl 17 . . . 4 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦)))))
10832raleqdv 3339 . . . 4 (𝜑 → (∀𝑥 ∈ ran 𝐹𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
109107, 108bitr3d 280 . . 3 (𝜑 → (∀𝑎𝑉𝑦𝐵 ((((𝐹𝑎)𝐷𝑦) = 0 ↔ (𝐹𝑎) = 𝑦) ∧ ∀𝑧𝐵 ((𝐹𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
11096, 109mpbid 231 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
11115elfvexd 6790 . . . 4 (𝜑𝑉 ∈ V)
112 fornex 7772 . . . 4 (𝑉 ∈ V → (𝐹:𝑉onto𝐵𝐵 ∈ V))
113111, 5, 112sylc 65 . . 3 (𝜑𝐵 ∈ V)
114 isxmet 23385 . . 3 (𝐵 ∈ V → (𝐷 ∈ (∞Met‘𝐵) ↔ (𝐷:(𝐵 × 𝐵)⟶ℝ* ∧ ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
115113, 114syl 17 . 2 (𝜑 → (𝐷 ∈ (∞Met‘𝐵) ↔ (𝐷:(𝐵 × 𝐵)⟶ℝ* ∧ ∀𝑥𝐵𝑦𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
11646, 110, 115mpbir2and 709 1 (𝜑𝐷 ∈ (∞Met‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422   class class class wbr 5070   × cxp 5578  ran crn 5581  cres 5582   Fn wfn 6413  wf 6414  1-1wf1 6415  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  0cc0 10802  *cxr 10939  cle 10941   +𝑒 cxad 12775  Basecbs 16840  distcds 16897  s cimas 17132  ∞Metcxmet 20495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-0g 17069  df-gsum 17070  df-xrs 17130  df-imas 17136  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-xmet 20503
This theorem is referenced by:  imasf1omet  23437  xpsxmet  23441  imasf1obl  23550  imasf1oxms  23551
  Copyright terms: Public domain W3C validator