Step | Hyp | Ref
| Expression |
1 | | imasf1oxmet.u |
. . . 4
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
2 | | imasf1oxmet.v |
. . . 4
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
3 | | imasf1oxmet.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
4 | | f1ofo 6723 |
. . . . 5
⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉–onto→𝐵) |
5 | 3, 4 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
6 | | imasf1oxmet.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑍) |
7 | | eqid 2738 |
. . . 4
⊢
(dist‘𝑅) =
(dist‘𝑅) |
8 | | imasf1oxmet.d |
. . . 4
⊢ 𝐷 = (dist‘𝑈) |
9 | 1, 2, 5, 6, 7, 8 | imasdsfn 17225 |
. . 3
⊢ (𝜑 → 𝐷 Fn (𝐵 × 𝐵)) |
10 | 1 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑈 = (𝐹 “s 𝑅)) |
11 | 2 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑉 = (Base‘𝑅)) |
12 | 3 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝐹:𝑉–1-1-onto→𝐵) |
13 | 6 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑅 ∈ 𝑍) |
14 | | imasf1oxmet.e |
. . . . . . . 8
⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) |
15 | | imasf1oxmet.m |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) |
16 | 15 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝐸 ∈ (∞Met‘𝑉)) |
17 | | simprl 768 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑎 ∈ 𝑉) |
18 | | simprr 770 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑏 ∈ 𝑉) |
19 | 10, 11, 12, 13, 14, 8, 16, 17, 18 | imasdsf1o 23527 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) = (𝑎𝐸𝑏)) |
20 | | xmetcl 23484 |
. . . . . . . . 9
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎𝐸𝑏) ∈
ℝ*) |
21 | 20 | 3expb 1119 |
. . . . . . . 8
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎𝐸𝑏) ∈
ℝ*) |
22 | 15, 21 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎𝐸𝑏) ∈
ℝ*) |
23 | 19, 22 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈
ℝ*) |
24 | 23 | ralrimivva 3123 |
. . . . 5
⊢ (𝜑 → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈
ℝ*) |
25 | | f1ofn 6717 |
. . . . . . . . 9
⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹 Fn 𝑉) |
26 | 3, 25 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 Fn 𝑉) |
27 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐹‘𝑏) → ((𝐹‘𝑎)𝐷𝑦) = ((𝐹‘𝑎)𝐷(𝐹‘𝑏))) |
28 | 27 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑦 = (𝐹‘𝑏) → (((𝐹‘𝑎)𝐷𝑦) ∈ ℝ* ↔ ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈
ℝ*)) |
29 | 28 | ralrn 6964 |
. . . . . . . 8
⊢ (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹((𝐹‘𝑎)𝐷𝑦) ∈ ℝ* ↔
∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈
ℝ*)) |
30 | 26, 29 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹‘𝑎)𝐷𝑦) ∈ ℝ* ↔
∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈
ℝ*)) |
31 | | forn 6691 |
. . . . . . . . 9
⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) |
32 | 5, 31 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 = 𝐵) |
33 | 32 | raleqdv 3348 |
. . . . . . 7
⊢ (𝜑 → (∀𝑦 ∈ ran 𝐹((𝐹‘𝑎)𝐷𝑦) ∈ ℝ* ↔
∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈
ℝ*)) |
34 | 30, 33 | bitr3d 280 |
. . . . . 6
⊢ (𝜑 → (∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ* ↔
∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈
ℝ*)) |
35 | 34 | ralbidv 3112 |
. . . . 5
⊢ (𝜑 → (∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ∈ ℝ* ↔
∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈
ℝ*)) |
36 | 24, 35 | mpbid 231 |
. . . 4
⊢ (𝜑 → ∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈
ℝ*) |
37 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑥 = (𝐹‘𝑎) → (𝑥𝐷𝑦) = ((𝐹‘𝑎)𝐷𝑦)) |
38 | 37 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑎) → ((𝑥𝐷𝑦) ∈ ℝ* ↔ ((𝐹‘𝑎)𝐷𝑦) ∈
ℝ*)) |
39 | 38 | ralbidv 3112 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑎) → (∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔
∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈
ℝ*)) |
40 | 39 | ralrn 6964 |
. . . . . 6
⊢ (𝐹 Fn 𝑉 → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔
∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈
ℝ*)) |
41 | 26, 40 | syl 17 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔
∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈
ℝ*)) |
42 | 32 | raleqdv 3348 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈ ℝ* ↔
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈
ℝ*)) |
43 | 41, 42 | bitr3d 280 |
. . . 4
⊢ (𝜑 → (∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ∈ ℝ* ↔
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈
ℝ*)) |
44 | 36, 43 | mpbid 231 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈
ℝ*) |
45 | | ffnov 7401 |
. . 3
⊢ (𝐷:(𝐵 × 𝐵)⟶ℝ* ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐷𝑦) ∈
ℝ*)) |
46 | 9, 44, 45 | sylanbrc 583 |
. 2
⊢ (𝜑 → 𝐷:(𝐵 × 𝐵)⟶ℝ*) |
47 | | xmeteq0 23491 |
. . . . . . . 8
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑎𝐸𝑏) = 0 ↔ 𝑎 = 𝑏)) |
48 | 16, 17, 18, 47 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝑎𝐸𝑏) = 0 ↔ 𝑎 = 𝑏)) |
49 | 19 | eqeq1d 2740 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (((𝐹‘𝑎)𝐷(𝐹‘𝑏)) = 0 ↔ (𝑎𝐸𝑏) = 0)) |
50 | | f1of1 6715 |
. . . . . . . . 9
⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉–1-1→𝐵) |
51 | 3, 50 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝑉–1-1→𝐵) |
52 | | f1fveq 7135 |
. . . . . . . 8
⊢ ((𝐹:𝑉–1-1→𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑏) ↔ 𝑎 = 𝑏)) |
53 | 51, 52 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑏) ↔ 𝑎 = 𝑏)) |
54 | 48, 49, 53 | 3bitr4d 311 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (((𝐹‘𝑎)𝐷(𝐹‘𝑏)) = 0 ↔ (𝐹‘𝑎) = (𝐹‘𝑏))) |
55 | 16 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) → 𝐸 ∈ (∞Met‘𝑉)) |
56 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) → 𝑐 ∈ 𝑉) |
57 | 17 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) → 𝑎 ∈ 𝑉) |
58 | 18 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) → 𝑏 ∈ 𝑉) |
59 | | xmettri2 23493 |
. . . . . . . . . 10
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑐 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎𝐸𝑏) ≤ ((𝑐𝐸𝑎) +𝑒 (𝑐𝐸𝑏))) |
60 | 55, 56, 57, 58, 59 | syl13anc 1371 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) → (𝑎𝐸𝑏) ≤ ((𝑐𝐸𝑎) +𝑒 (𝑐𝐸𝑏))) |
61 | 19 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) → ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) = (𝑎𝐸𝑏)) |
62 | 10 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) → 𝑈 = (𝐹 “s 𝑅)) |
63 | 11 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) → 𝑉 = (Base‘𝑅)) |
64 | 12 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) → 𝐹:𝑉–1-1-onto→𝐵) |
65 | 13 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) → 𝑅 ∈ 𝑍) |
66 | 62, 63, 64, 65, 14, 8, 55, 56, 57 | imasdsf1o 23527 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) → ((𝐹‘𝑐)𝐷(𝐹‘𝑎)) = (𝑐𝐸𝑎)) |
67 | 62, 63, 64, 65, 14, 8, 55, 56, 58 | imasdsf1o 23527 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) → ((𝐹‘𝑐)𝐷(𝐹‘𝑏)) = (𝑐𝐸𝑏)) |
68 | 66, 67 | oveq12d 7293 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) → (((𝐹‘𝑐)𝐷(𝐹‘𝑎)) +𝑒 ((𝐹‘𝑐)𝐷(𝐹‘𝑏))) = ((𝑐𝐸𝑎) +𝑒 (𝑐𝐸𝑏))) |
69 | 60, 61, 68 | 3brtr4d 5106 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) → ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ (((𝐹‘𝑐)𝐷(𝐹‘𝑎)) +𝑒 ((𝐹‘𝑐)𝐷(𝐹‘𝑏)))) |
70 | 69 | ralrimiva 3103 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ∀𝑐 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ (((𝐹‘𝑐)𝐷(𝐹‘𝑎)) +𝑒 ((𝐹‘𝑐)𝐷(𝐹‘𝑏)))) |
71 | | oveq1 7282 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝐹‘𝑐) → (𝑧𝐷(𝐹‘𝑎)) = ((𝐹‘𝑐)𝐷(𝐹‘𝑎))) |
72 | | oveq1 7282 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝐹‘𝑐) → (𝑧𝐷(𝐹‘𝑏)) = ((𝐹‘𝑐)𝐷(𝐹‘𝑏))) |
73 | 71, 72 | oveq12d 7293 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝐹‘𝑐) → ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷(𝐹‘𝑏))) = (((𝐹‘𝑐)𝐷(𝐹‘𝑎)) +𝑒 ((𝐹‘𝑐)𝐷(𝐹‘𝑏)))) |
74 | 73 | breq2d 5086 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐹‘𝑐) → (((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷(𝐹‘𝑏))) ↔ ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ (((𝐹‘𝑐)𝐷(𝐹‘𝑎)) +𝑒 ((𝐹‘𝑐)𝐷(𝐹‘𝑏))))) |
75 | 74 | ralrn 6964 |
. . . . . . . . . 10
⊢ (𝐹 Fn 𝑉 → (∀𝑧 ∈ ran 𝐹((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷(𝐹‘𝑏))) ↔ ∀𝑐 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ (((𝐹‘𝑐)𝐷(𝐹‘𝑎)) +𝑒 ((𝐹‘𝑐)𝐷(𝐹‘𝑏))))) |
76 | 26, 75 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (∀𝑧 ∈ ran 𝐹((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷(𝐹‘𝑏))) ↔ ∀𝑐 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ (((𝐹‘𝑐)𝐷(𝐹‘𝑎)) +𝑒 ((𝐹‘𝑐)𝐷(𝐹‘𝑏))))) |
77 | 32 | raleqdv 3348 |
. . . . . . . . 9
⊢ (𝜑 → (∀𝑧 ∈ ran 𝐹((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷(𝐹‘𝑏))) ↔ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷(𝐹‘𝑏))))) |
78 | 76, 77 | bitr3d 280 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑐 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ (((𝐹‘𝑐)𝐷(𝐹‘𝑎)) +𝑒 ((𝐹‘𝑐)𝐷(𝐹‘𝑏))) ↔ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷(𝐹‘𝑏))))) |
79 | 78 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (∀𝑐 ∈ 𝑉 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ (((𝐹‘𝑐)𝐷(𝐹‘𝑎)) +𝑒 ((𝐹‘𝑐)𝐷(𝐹‘𝑏))) ↔ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷(𝐹‘𝑏))))) |
80 | 70, 79 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷(𝐹‘𝑏)))) |
81 | 54, 80 | jca 512 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((((𝐹‘𝑎)𝐷(𝐹‘𝑏)) = 0 ↔ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷(𝐹‘𝑏))))) |
82 | 81 | ralrimivva 3123 |
. . . 4
⊢ (𝜑 → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ((((𝐹‘𝑎)𝐷(𝐹‘𝑏)) = 0 ↔ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷(𝐹‘𝑏))))) |
83 | 27 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐹‘𝑏) → (((𝐹‘𝑎)𝐷𝑦) = 0 ↔ ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) = 0)) |
84 | | eqeq2 2750 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐹‘𝑏) → ((𝐹‘𝑎) = 𝑦 ↔ (𝐹‘𝑎) = (𝐹‘𝑏))) |
85 | 83, 84 | bibi12d 346 |
. . . . . . . . 9
⊢ (𝑦 = (𝐹‘𝑏) → ((((𝐹‘𝑎)𝐷𝑦) = 0 ↔ (𝐹‘𝑎) = 𝑦) ↔ (((𝐹‘𝑎)𝐷(𝐹‘𝑏)) = 0 ↔ (𝐹‘𝑎) = (𝐹‘𝑏)))) |
86 | | oveq2 7283 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐹‘𝑏) → (𝑧𝐷𝑦) = (𝑧𝐷(𝐹‘𝑏))) |
87 | 86 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐹‘𝑏) → ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷(𝐹‘𝑏)))) |
88 | 27, 87 | breq12d 5087 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐹‘𝑏) → (((𝐹‘𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷𝑦)) ↔ ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷(𝐹‘𝑏))))) |
89 | 88 | ralbidv 3112 |
. . . . . . . . 9
⊢ (𝑦 = (𝐹‘𝑏) → (∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷𝑦)) ↔ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷(𝐹‘𝑏))))) |
90 | 85, 89 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘𝑏) → (((((𝐹‘𝑎)𝐷𝑦) = 0 ↔ (𝐹‘𝑎) = 𝑦) ∧ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ((((𝐹‘𝑎)𝐷(𝐹‘𝑏)) = 0 ↔ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷(𝐹‘𝑏)))))) |
91 | 90 | ralrn 6964 |
. . . . . . 7
⊢ (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹((((𝐹‘𝑎)𝐷𝑦) = 0 ↔ (𝐹‘𝑎) = 𝑦) ∧ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑏 ∈ 𝑉 ((((𝐹‘𝑎)𝐷(𝐹‘𝑏)) = 0 ↔ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷(𝐹‘𝑏)))))) |
92 | 26, 91 | syl 17 |
. . . . . 6
⊢ (𝜑 → (∀𝑦 ∈ ran 𝐹((((𝐹‘𝑎)𝐷𝑦) = 0 ↔ (𝐹‘𝑎) = 𝑦) ∧ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑏 ∈ 𝑉 ((((𝐹‘𝑎)𝐷(𝐹‘𝑏)) = 0 ↔ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷(𝐹‘𝑏)))))) |
93 | 32 | raleqdv 3348 |
. . . . . 6
⊢ (𝜑 → (∀𝑦 ∈ ran 𝐹((((𝐹‘𝑎)𝐷𝑦) = 0 ↔ (𝐹‘𝑎) = 𝑦) ∧ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑦 ∈ 𝐵 ((((𝐹‘𝑎)𝐷𝑦) = 0 ↔ (𝐹‘𝑎) = 𝑦) ∧ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷𝑦))))) |
94 | 92, 93 | bitr3d 280 |
. . . . 5
⊢ (𝜑 → (∀𝑏 ∈ 𝑉 ((((𝐹‘𝑎)𝐷(𝐹‘𝑏)) = 0 ↔ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷(𝐹‘𝑏)))) ↔ ∀𝑦 ∈ 𝐵 ((((𝐹‘𝑎)𝐷𝑦) = 0 ↔ (𝐹‘𝑎) = 𝑦) ∧ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷𝑦))))) |
95 | 94 | ralbidv 3112 |
. . . 4
⊢ (𝜑 → (∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ((((𝐹‘𝑎)𝐷(𝐹‘𝑏)) = 0 ↔ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷(𝐹‘𝑏)) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷(𝐹‘𝑏)))) ↔ ∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((((𝐹‘𝑎)𝐷𝑦) = 0 ↔ (𝐹‘𝑎) = 𝑦) ∧ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷𝑦))))) |
96 | 82, 95 | mpbid 231 |
. . 3
⊢ (𝜑 → ∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((((𝐹‘𝑎)𝐷𝑦) = 0 ↔ (𝐹‘𝑎) = 𝑦) ∧ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷𝑦)))) |
97 | 37 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑥 = (𝐹‘𝑎) → ((𝑥𝐷𝑦) = 0 ↔ ((𝐹‘𝑎)𝐷𝑦) = 0)) |
98 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑥 = (𝐹‘𝑎) → (𝑥 = 𝑦 ↔ (𝐹‘𝑎) = 𝑦)) |
99 | 97, 98 | bibi12d 346 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑎) → (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ↔ (((𝐹‘𝑎)𝐷𝑦) = 0 ↔ (𝐹‘𝑎) = 𝑦))) |
100 | | oveq2 7283 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐹‘𝑎) → (𝑧𝐷𝑥) = (𝑧𝐷(𝐹‘𝑎))) |
101 | 100 | oveq1d 7290 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐹‘𝑎) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷𝑦))) |
102 | 37, 101 | breq12d 5087 |
. . . . . . . . 9
⊢ (𝑥 = (𝐹‘𝑎) → ((𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ ((𝐹‘𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷𝑦)))) |
103 | 102 | ralbidv 3112 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑎) → (∀𝑧 ∈ 𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷𝑦)))) |
104 | 99, 103 | anbi12d 631 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑎) → ((((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ((((𝐹‘𝑎)𝐷𝑦) = 0 ↔ (𝐹‘𝑎) = 𝑦) ∧ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷𝑦))))) |
105 | 104 | ralbidv 3112 |
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑎) → (∀𝑦 ∈ 𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑦 ∈ 𝐵 ((((𝐹‘𝑎)𝐷𝑦) = 0 ↔ (𝐹‘𝑎) = 𝑦) ∧ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷𝑦))))) |
106 | 105 | ralrn 6964 |
. . . . 5
⊢ (𝐹 Fn 𝑉 → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ 𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((((𝐹‘𝑎)𝐷𝑦) = 0 ↔ (𝐹‘𝑎) = 𝑦) ∧ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷𝑦))))) |
107 | 26, 106 | syl 17 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ 𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((((𝐹‘𝑎)𝐷𝑦) = 0 ↔ (𝐹‘𝑎) = 𝑦) ∧ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷𝑦))))) |
108 | 32 | raleqdv 3348 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ 𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) |
109 | 107, 108 | bitr3d 280 |
. . 3
⊢ (𝜑 → (∀𝑎 ∈ 𝑉 ∀𝑦 ∈ 𝐵 ((((𝐹‘𝑎)𝐷𝑦) = 0 ↔ (𝐹‘𝑎) = 𝑦) ∧ ∀𝑧 ∈ 𝐵 ((𝐹‘𝑎)𝐷𝑦) ≤ ((𝑧𝐷(𝐹‘𝑎)) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) |
110 | 96, 109 | mpbid 231 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) |
111 | 15 | elfvexd 6808 |
. . . 4
⊢ (𝜑 → 𝑉 ∈ V) |
112 | | fornex 7798 |
. . . 4
⊢ (𝑉 ∈ V → (𝐹:𝑉–onto→𝐵 → 𝐵 ∈ V)) |
113 | 111, 5, 112 | sylc 65 |
. . 3
⊢ (𝜑 → 𝐵 ∈ V) |
114 | | isxmet 23477 |
. . 3
⊢ (𝐵 ∈ V → (𝐷 ∈ (∞Met‘𝐵) ↔ (𝐷:(𝐵 × 𝐵)⟶ℝ* ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) |
115 | 113, 114 | syl 17 |
. 2
⊢ (𝜑 → (𝐷 ∈ (∞Met‘𝐵) ↔ (𝐷:(𝐵 × 𝐵)⟶ℝ* ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝐵 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) |
116 | 46, 110, 115 | mpbir2and 710 |
1
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |