MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meteq0 Structured version   Visualization version   GIF version

Theorem meteq0 24165
Description: The value of a metric is zero iff its arguments are equal. Property M2 of [Kreyszig] p. 4. (Contributed by NM, 30-Aug-2006.)
Assertion
Ref Expression
meteq0 ((𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((𝐴𝐷𝐡) = 0 ↔ 𝐴 = 𝐡))

Proof of Theorem meteq0
StepHypRef Expression
1 metxmet 24160 . 2 (𝐷 ∈ (Metβ€˜π‘‹) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
2 xmeteq0 24164 . 2 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((𝐴𝐷𝐡) = 0 ↔ 𝐴 = 𝐡))
31, 2syl3an1 1162 1 ((𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((𝐴𝐷𝐡) = 0 ↔ 𝐴 = 𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  β€˜cfv 6543  (class class class)co 7412  0cc0 11116  βˆžMetcxmet 21218  Metcmet 21219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-mulcl 11178  ax-i2m1 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-xadd 13100  df-xmet 21226  df-met 21227
This theorem is referenced by:  minveclem7  25283  minvecolem7  30569  metf1o  37087  bfplem2  37155  bfp  37156
  Copyright terms: Public domain W3C validator