MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmseq0 Structured version   Visualization version   GIF version

Theorem xmseq0 24408
Description: The distance between two points in an extended metric space is zero iff the two points are identical. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mscl.x 𝑋 = (Base‘𝑀)
mscl.d 𝐷 = (dist‘𝑀)
Assertion
Ref Expression
xmseq0 ((𝑀 ∈ ∞MetSp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵))

Proof of Theorem xmseq0
StepHypRef Expression
1 ovres 7578 . . . 4 ((𝐴𝑋𝐵𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))
213adant1 1130 . . 3 ((𝑀 ∈ ∞MetSp ∧ 𝐴𝑋𝐵𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))
32eqeq1d 2738 . 2 ((𝑀 ∈ ∞MetSp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = 0 ↔ (𝐴𝐷𝐵) = 0))
4 mscl.x . . . 4 𝑋 = (Base‘𝑀)
5 mscl.d . . . 4 𝐷 = (dist‘𝑀)
64, 5xmsxmet2 24403 . . 3 (𝑀 ∈ ∞MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋))
7 xmeteq0 24282 . . 3 (((𝐷 ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = 0 ↔ 𝐴 = 𝐵))
86, 7syl3an1 1163 . 2 ((𝑀 ∈ ∞MetSp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = 0 ↔ 𝐴 = 𝐵))
93, 8bitr3d 281 1 ((𝑀 ∈ ∞MetSp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109   × cxp 5657  cres 5661  cfv 6536  (class class class)co 7410  0cc0 11134  Basecbs 17233  distcds 17285  ∞Metcxmet 21305  ∞MetSpcxms 24261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-bl 21315  df-mopn 21316  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-xms 24264
This theorem is referenced by:  nmeq0  24562  nrginvrcn  24636  xmstrkgc  28870
  Copyright terms: Public domain W3C validator