![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xnn0add4d | Structured version Visualization version GIF version |
Description: Rearrangement of 4 terms in a sum for extended addition of extended nonnegative integers, analogous to xadd4d 13324. (Contributed by AV, 12-Dec-2020.) |
Ref | Expression |
---|---|
xnn0add4d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0*) |
xnn0add4d.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ0*) |
xnn0add4d.3 | ⊢ (𝜑 → 𝐶 ∈ ℕ0*) |
xnn0add4d.4 | ⊢ (𝜑 → 𝐷 ∈ ℕ0*) |
Ref | Expression |
---|---|
xnn0add4d | ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnn0add4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℕ0*) | |
2 | xnn0xrnemnf 12596 | . . 3 ⊢ (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) |
4 | xnn0add4d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℕ0*) | |
5 | xnn0xrnemnf 12596 | . . 3 ⊢ (𝐵 ∈ ℕ0* → (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) |
7 | xnn0add4d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℕ0*) | |
8 | xnn0xrnemnf 12596 | . . 3 ⊢ (𝐶 ∈ ℕ0* → (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞)) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞)) |
10 | xnn0add4d.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℕ0*) | |
11 | xnn0xrnemnf 12596 | . . 3 ⊢ (𝐷 ∈ ℕ0* → (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) | |
12 | 10, 11 | syl 17 | . 2 ⊢ (𝜑 → (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) |
13 | 3, 6, 9, 12 | xadd4d 13324 | 1 ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 (class class class)co 7426 -∞cmnf 11286 ℝ*cxr 11287 ℕ0*cxnn0 12584 +𝑒 cxad 13132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-nn 12253 df-n0 12513 df-xnn0 12585 df-xadd 13135 |
This theorem is referenced by: vtxdun 29323 vtxdginducedm1 29385 |
Copyright terms: Public domain | W3C validator |