ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemloccalc GIF version

Theorem caucvgprprlemloccalc 7516
Description: Lemma for caucvgprpr 7544. Rearranging some expressions for caucvgprprlemloc 7535. (Contributed by Jim Kingdon, 8-Feb-2021.)
Hypotheses
Ref Expression
caucvgprprlemloccalc.st (𝜑𝑆 <Q 𝑇)
caucvgprprlemloccalc.y (𝜑𝑌Q)
caucvgprprlemloccalc.syt (𝜑 → (𝑆 +Q 𝑌) = 𝑇)
caucvgprprlemloccalc.x (𝜑𝑋Q)
caucvgprprlemloccalc.xxy (𝜑 → (𝑋 +Q 𝑋) <Q 𝑌)
caucvgprprlemloccalc.m (𝜑𝑀N)
caucvgprprlemloccalc.mx (𝜑 → (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋)
Assertion
Ref Expression
caucvgprprlemloccalc (𝜑 → (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
Distinct variable groups:   𝑀,𝑙,𝑢   𝑆,𝑙,𝑢   𝑇,𝑙,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝑋(𝑢,𝑙)   𝑌(𝑢,𝑙)

Proof of Theorem caucvgprprlemloccalc
StepHypRef Expression
1 caucvgprprlemloccalc.st . . . . . 6 (𝜑𝑆 <Q 𝑇)
2 ltrelnq 7197 . . . . . . 7 <Q ⊆ (Q × Q)
32brel 4599 . . . . . 6 (𝑆 <Q 𝑇 → (𝑆Q𝑇Q))
41, 3syl 14 . . . . 5 (𝜑 → (𝑆Q𝑇Q))
54simpld 111 . . . 4 (𝜑𝑆Q)
6 caucvgprprlemloccalc.m . . . . 5 (𝜑𝑀N)
7 nnnq 7254 . . . . 5 (𝑀N → [⟨𝑀, 1o⟩] ~QQ)
8 recclnq 7224 . . . . 5 ([⟨𝑀, 1o⟩] ~QQ → (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q)
96, 7, 83syl 17 . . . 4 (𝜑 → (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q)
10 addclnq 7207 . . . 4 ((𝑆Q ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q) → (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) ∈ Q)
115, 9, 10syl2anc 409 . . 3 (𝜑 → (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) ∈ Q)
12 addnqpr 7393 . . 3 (((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) ∈ Q ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q) → ⟨{𝑙𝑙 <Q ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑢}⟩))
1311, 9, 12syl2anc 409 . 2 (𝜑 → ⟨{𝑙𝑙 <Q ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑢}⟩))
14 addassnqg 7214 . . . . 5 ((𝑆Q ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q) → ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) = (𝑆 +Q ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))))
155, 9, 9, 14syl3anc 1217 . . . 4 (𝜑 → ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) = (𝑆 +Q ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))))
16 caucvgprprlemloccalc.mx . . . . . . . 8 (𝜑 → (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋)
17 caucvgprprlemloccalc.x . . . . . . . . 9 (𝜑𝑋Q)
18 lt2addnq 7236 . . . . . . . . 9 ((((*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q𝑋Q) ∧ ((*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q𝑋Q)) → (((*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋 ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋) → ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q (𝑋 +Q 𝑋)))
199, 17, 9, 17, 18syl22anc 1218 . . . . . . . 8 (𝜑 → (((*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋 ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋) → ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q (𝑋 +Q 𝑋)))
2016, 16, 19mp2and 430 . . . . . . 7 (𝜑 → ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q (𝑋 +Q 𝑋))
21 caucvgprprlemloccalc.xxy . . . . . . 7 (𝜑 → (𝑋 +Q 𝑋) <Q 𝑌)
22 ltsonq 7230 . . . . . . . 8 <Q Or Q
2322, 2sotri 4942 . . . . . . 7 ((((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q (𝑋 +Q 𝑋) ∧ (𝑋 +Q 𝑋) <Q 𝑌) → ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑌)
2420, 21, 23syl2anc 409 . . . . . 6 (𝜑 → ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑌)
25 ltanqi 7234 . . . . . 6 ((((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑌𝑆Q) → (𝑆 +Q ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))) <Q (𝑆 +Q 𝑌))
2624, 5, 25syl2anc 409 . . . . 5 (𝜑 → (𝑆 +Q ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))) <Q (𝑆 +Q 𝑌))
27 caucvgprprlemloccalc.syt . . . . 5 (𝜑 → (𝑆 +Q 𝑌) = 𝑇)
2826, 27breqtrd 3962 . . . 4 (𝜑 → (𝑆 +Q ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))) <Q 𝑇)
2915, 28eqbrtrd 3958 . . 3 (𝜑 → ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑇)
30 ltnqpri 7426 . . 3 (((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑇 → ⟨{𝑙𝑙 <Q ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
3129, 30syl 14 . 2 (𝜑 → ⟨{𝑙𝑙 <Q ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
3213, 31eqbrtrrd 3960 1 (𝜑 → (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  {cab 2126  cop 3535   class class class wbr 3937  cfv 5131  (class class class)co 5782  1oc1o 6314  [cec 6435  Ncnpi 7104   ~Q ceq 7111  Qcnq 7112   +Q cplq 7114  *Qcrq 7116   <Q cltq 7117   +P cpp 7125  <P cltp 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iplp 7300  df-iltp 7302
This theorem is referenced by:  caucvgprprlemloc  7535
  Copyright terms: Public domain W3C validator