ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemloccalc GIF version

Theorem caucvgprprlemloccalc 7827
Description: Lemma for caucvgprpr 7855. Rearranging some expressions for caucvgprprlemloc 7846. (Contributed by Jim Kingdon, 8-Feb-2021.)
Hypotheses
Ref Expression
caucvgprprlemloccalc.st (𝜑𝑆 <Q 𝑇)
caucvgprprlemloccalc.y (𝜑𝑌Q)
caucvgprprlemloccalc.syt (𝜑 → (𝑆 +Q 𝑌) = 𝑇)
caucvgprprlemloccalc.x (𝜑𝑋Q)
caucvgprprlemloccalc.xxy (𝜑 → (𝑋 +Q 𝑋) <Q 𝑌)
caucvgprprlemloccalc.m (𝜑𝑀N)
caucvgprprlemloccalc.mx (𝜑 → (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋)
Assertion
Ref Expression
caucvgprprlemloccalc (𝜑 → (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
Distinct variable groups:   𝑀,𝑙,𝑢   𝑆,𝑙,𝑢   𝑇,𝑙,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝑋(𝑢,𝑙)   𝑌(𝑢,𝑙)

Proof of Theorem caucvgprprlemloccalc
StepHypRef Expression
1 caucvgprprlemloccalc.st . . . . . 6 (𝜑𝑆 <Q 𝑇)
2 ltrelnq 7508 . . . . . . 7 <Q ⊆ (Q × Q)
32brel 4740 . . . . . 6 (𝑆 <Q 𝑇 → (𝑆Q𝑇Q))
41, 3syl 14 . . . . 5 (𝜑 → (𝑆Q𝑇Q))
54simpld 112 . . . 4 (𝜑𝑆Q)
6 caucvgprprlemloccalc.m . . . . 5 (𝜑𝑀N)
7 nnnq 7565 . . . . 5 (𝑀N → [⟨𝑀, 1o⟩] ~QQ)
8 recclnq 7535 . . . . 5 ([⟨𝑀, 1o⟩] ~QQ → (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q)
96, 7, 83syl 17 . . . 4 (𝜑 → (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q)
10 addclnq 7518 . . . 4 ((𝑆Q ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q) → (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) ∈ Q)
115, 9, 10syl2anc 411 . . 3 (𝜑 → (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) ∈ Q)
12 addnqpr 7704 . . 3 (((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) ∈ Q ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q) → ⟨{𝑙𝑙 <Q ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑢}⟩))
1311, 9, 12syl2anc 411 . 2 (𝜑 → ⟨{𝑙𝑙 <Q ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑢}⟩))
14 addassnqg 7525 . . . . 5 ((𝑆Q ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q) → ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) = (𝑆 +Q ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))))
155, 9, 9, 14syl3anc 1250 . . . 4 (𝜑 → ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) = (𝑆 +Q ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))))
16 caucvgprprlemloccalc.mx . . . . . . . 8 (𝜑 → (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋)
17 caucvgprprlemloccalc.x . . . . . . . . 9 (𝜑𝑋Q)
18 lt2addnq 7547 . . . . . . . . 9 ((((*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q𝑋Q) ∧ ((*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q𝑋Q)) → (((*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋 ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋) → ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q (𝑋 +Q 𝑋)))
199, 17, 9, 17, 18syl22anc 1251 . . . . . . . 8 (𝜑 → (((*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋 ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋) → ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q (𝑋 +Q 𝑋)))
2016, 16, 19mp2and 433 . . . . . . 7 (𝜑 → ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q (𝑋 +Q 𝑋))
21 caucvgprprlemloccalc.xxy . . . . . . 7 (𝜑 → (𝑋 +Q 𝑋) <Q 𝑌)
22 ltsonq 7541 . . . . . . . 8 <Q Or Q
2322, 2sotri 5092 . . . . . . 7 ((((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q (𝑋 +Q 𝑋) ∧ (𝑋 +Q 𝑋) <Q 𝑌) → ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑌)
2420, 21, 23syl2anc 411 . . . . . 6 (𝜑 → ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑌)
25 ltanqi 7545 . . . . . 6 ((((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑌𝑆Q) → (𝑆 +Q ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))) <Q (𝑆 +Q 𝑌))
2624, 5, 25syl2anc 411 . . . . 5 (𝜑 → (𝑆 +Q ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))) <Q (𝑆 +Q 𝑌))
27 caucvgprprlemloccalc.syt . . . . 5 (𝜑 → (𝑆 +Q 𝑌) = 𝑇)
2826, 27breqtrd 4080 . . . 4 (𝜑 → (𝑆 +Q ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))) <Q 𝑇)
2915, 28eqbrtrd 4076 . . 3 (𝜑 → ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑇)
30 ltnqpri 7737 . . 3 (((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑇 → ⟨{𝑙𝑙 <Q ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
3129, 30syl 14 . 2 (𝜑 → ⟨{𝑙𝑙 <Q ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
3213, 31eqbrtrrd 4078 1 (𝜑 → (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {cab 2192  cop 3641   class class class wbr 4054  cfv 5285  (class class class)co 5962  1oc1o 6513  [cec 6636  Ncnpi 7415   ~Q ceq 7422  Qcnq 7423   +Q cplq 7425  *Qcrq 7427   <Q cltq 7428   +P cpp 7436  <P cltp 7438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-eprel 4349  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-irdg 6474  df-1o 6520  df-2o 6521  df-oadd 6524  df-omul 6525  df-er 6638  df-ec 6640  df-qs 6644  df-ni 7447  df-pli 7448  df-mi 7449  df-lti 7450  df-plpq 7487  df-mpq 7488  df-enq 7490  df-nqqs 7491  df-plqqs 7492  df-mqqs 7493  df-1nqqs 7494  df-rq 7495  df-ltnqqs 7496  df-enq0 7567  df-nq0 7568  df-0nq0 7569  df-plq0 7570  df-mq0 7571  df-inp 7609  df-iplp 7611  df-iltp 7613
This theorem is referenced by:  caucvgprprlemloc  7846
  Copyright terms: Public domain W3C validator