ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemloccalc GIF version

Theorem caucvgprprlemloccalc 7779
Description: Lemma for caucvgprpr 7807. Rearranging some expressions for caucvgprprlemloc 7798. (Contributed by Jim Kingdon, 8-Feb-2021.)
Hypotheses
Ref Expression
caucvgprprlemloccalc.st (𝜑𝑆 <Q 𝑇)
caucvgprprlemloccalc.y (𝜑𝑌Q)
caucvgprprlemloccalc.syt (𝜑 → (𝑆 +Q 𝑌) = 𝑇)
caucvgprprlemloccalc.x (𝜑𝑋Q)
caucvgprprlemloccalc.xxy (𝜑 → (𝑋 +Q 𝑋) <Q 𝑌)
caucvgprprlemloccalc.m (𝜑𝑀N)
caucvgprprlemloccalc.mx (𝜑 → (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋)
Assertion
Ref Expression
caucvgprprlemloccalc (𝜑 → (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
Distinct variable groups:   𝑀,𝑙,𝑢   𝑆,𝑙,𝑢   𝑇,𝑙,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝑋(𝑢,𝑙)   𝑌(𝑢,𝑙)

Proof of Theorem caucvgprprlemloccalc
StepHypRef Expression
1 caucvgprprlemloccalc.st . . . . . 6 (𝜑𝑆 <Q 𝑇)
2 ltrelnq 7460 . . . . . . 7 <Q ⊆ (Q × Q)
32brel 4725 . . . . . 6 (𝑆 <Q 𝑇 → (𝑆Q𝑇Q))
41, 3syl 14 . . . . 5 (𝜑 → (𝑆Q𝑇Q))
54simpld 112 . . . 4 (𝜑𝑆Q)
6 caucvgprprlemloccalc.m . . . . 5 (𝜑𝑀N)
7 nnnq 7517 . . . . 5 (𝑀N → [⟨𝑀, 1o⟩] ~QQ)
8 recclnq 7487 . . . . 5 ([⟨𝑀, 1o⟩] ~QQ → (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q)
96, 7, 83syl 17 . . . 4 (𝜑 → (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q)
10 addclnq 7470 . . . 4 ((𝑆Q ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q) → (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) ∈ Q)
115, 9, 10syl2anc 411 . . 3 (𝜑 → (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) ∈ Q)
12 addnqpr 7656 . . 3 (((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) ∈ Q ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q) → ⟨{𝑙𝑙 <Q ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑢}⟩))
1311, 9, 12syl2anc 411 . 2 (𝜑 → ⟨{𝑙𝑙 <Q ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑢}⟩))
14 addassnqg 7477 . . . . 5 ((𝑆Q ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q) → ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) = (𝑆 +Q ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))))
155, 9, 9, 14syl3anc 1249 . . . 4 (𝜑 → ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) = (𝑆 +Q ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))))
16 caucvgprprlemloccalc.mx . . . . . . . 8 (𝜑 → (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋)
17 caucvgprprlemloccalc.x . . . . . . . . 9 (𝜑𝑋Q)
18 lt2addnq 7499 . . . . . . . . 9 ((((*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q𝑋Q) ∧ ((*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q𝑋Q)) → (((*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋 ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋) → ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q (𝑋 +Q 𝑋)))
199, 17, 9, 17, 18syl22anc 1250 . . . . . . . 8 (𝜑 → (((*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋 ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋) → ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q (𝑋 +Q 𝑋)))
2016, 16, 19mp2and 433 . . . . . . 7 (𝜑 → ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q (𝑋 +Q 𝑋))
21 caucvgprprlemloccalc.xxy . . . . . . 7 (𝜑 → (𝑋 +Q 𝑋) <Q 𝑌)
22 ltsonq 7493 . . . . . . . 8 <Q Or Q
2322, 2sotri 5075 . . . . . . 7 ((((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q (𝑋 +Q 𝑋) ∧ (𝑋 +Q 𝑋) <Q 𝑌) → ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑌)
2420, 21, 23syl2anc 411 . . . . . 6 (𝜑 → ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑌)
25 ltanqi 7497 . . . . . 6 ((((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑌𝑆Q) → (𝑆 +Q ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))) <Q (𝑆 +Q 𝑌))
2624, 5, 25syl2anc 411 . . . . 5 (𝜑 → (𝑆 +Q ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))) <Q (𝑆 +Q 𝑌))
27 caucvgprprlemloccalc.syt . . . . 5 (𝜑 → (𝑆 +Q 𝑌) = 𝑇)
2826, 27breqtrd 4069 . . . 4 (𝜑 → (𝑆 +Q ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))) <Q 𝑇)
2915, 28eqbrtrd 4065 . . 3 (𝜑 → ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑇)
30 ltnqpri 7689 . . 3 (((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑇 → ⟨{𝑙𝑙 <Q ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
3129, 30syl 14 . 2 (𝜑 → ⟨{𝑙𝑙 <Q ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
3213, 31eqbrtrrd 4067 1 (𝜑 → (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  {cab 2190  cop 3635   class class class wbr 4043  cfv 5268  (class class class)co 5934  1oc1o 6485  [cec 6608  Ncnpi 7367   ~Q ceq 7374  Qcnq 7375   +Q cplq 7377  *Qcrq 7379   <Q cltq 7380   +P cpp 7388  <P cltp 7390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4334  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-1o 6492  df-2o 6493  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-qs 6616  df-ni 7399  df-pli 7400  df-mi 7401  df-lti 7402  df-plpq 7439  df-mpq 7440  df-enq 7442  df-nqqs 7443  df-plqqs 7444  df-mqqs 7445  df-1nqqs 7446  df-rq 7447  df-ltnqqs 7448  df-enq0 7519  df-nq0 7520  df-0nq0 7521  df-plq0 7522  df-mq0 7523  df-inp 7561  df-iplp 7563  df-iltp 7565
This theorem is referenced by:  caucvgprprlemloc  7798
  Copyright terms: Public domain W3C validator