ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemloccalc GIF version

Theorem caucvgprprlemloccalc 7867
Description: Lemma for caucvgprpr 7895. Rearranging some expressions for caucvgprprlemloc 7886. (Contributed by Jim Kingdon, 8-Feb-2021.)
Hypotheses
Ref Expression
caucvgprprlemloccalc.st (𝜑𝑆 <Q 𝑇)
caucvgprprlemloccalc.y (𝜑𝑌Q)
caucvgprprlemloccalc.syt (𝜑 → (𝑆 +Q 𝑌) = 𝑇)
caucvgprprlemloccalc.x (𝜑𝑋Q)
caucvgprprlemloccalc.xxy (𝜑 → (𝑋 +Q 𝑋) <Q 𝑌)
caucvgprprlemloccalc.m (𝜑𝑀N)
caucvgprprlemloccalc.mx (𝜑 → (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋)
Assertion
Ref Expression
caucvgprprlemloccalc (𝜑 → (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
Distinct variable groups:   𝑀,𝑙,𝑢   𝑆,𝑙,𝑢   𝑇,𝑙,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝑋(𝑢,𝑙)   𝑌(𝑢,𝑙)

Proof of Theorem caucvgprprlemloccalc
StepHypRef Expression
1 caucvgprprlemloccalc.st . . . . . 6 (𝜑𝑆 <Q 𝑇)
2 ltrelnq 7548 . . . . . . 7 <Q ⊆ (Q × Q)
32brel 4770 . . . . . 6 (𝑆 <Q 𝑇 → (𝑆Q𝑇Q))
41, 3syl 14 . . . . 5 (𝜑 → (𝑆Q𝑇Q))
54simpld 112 . . . 4 (𝜑𝑆Q)
6 caucvgprprlemloccalc.m . . . . 5 (𝜑𝑀N)
7 nnnq 7605 . . . . 5 (𝑀N → [⟨𝑀, 1o⟩] ~QQ)
8 recclnq 7575 . . . . 5 ([⟨𝑀, 1o⟩] ~QQ → (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q)
96, 7, 83syl 17 . . . 4 (𝜑 → (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q)
10 addclnq 7558 . . . 4 ((𝑆Q ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q) → (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) ∈ Q)
115, 9, 10syl2anc 411 . . 3 (𝜑 → (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) ∈ Q)
12 addnqpr 7744 . . 3 (((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) ∈ Q ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q) → ⟨{𝑙𝑙 <Q ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑢}⟩))
1311, 9, 12syl2anc 411 . 2 (𝜑 → ⟨{𝑙𝑙 <Q ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑢}⟩))
14 addassnqg 7565 . . . . 5 ((𝑆Q ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q) → ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) = (𝑆 +Q ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))))
155, 9, 9, 14syl3anc 1271 . . . 4 (𝜑 → ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) = (𝑆 +Q ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))))
16 caucvgprprlemloccalc.mx . . . . . . . 8 (𝜑 → (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋)
17 caucvgprprlemloccalc.x . . . . . . . . 9 (𝜑𝑋Q)
18 lt2addnq 7587 . . . . . . . . 9 ((((*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q𝑋Q) ∧ ((*Q‘[⟨𝑀, 1o⟩] ~Q ) ∈ Q𝑋Q)) → (((*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋 ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋) → ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q (𝑋 +Q 𝑋)))
199, 17, 9, 17, 18syl22anc 1272 . . . . . . . 8 (𝜑 → (((*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋 ∧ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋) → ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q (𝑋 +Q 𝑋)))
2016, 16, 19mp2and 433 . . . . . . 7 (𝜑 → ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q (𝑋 +Q 𝑋))
21 caucvgprprlemloccalc.xxy . . . . . . 7 (𝜑 → (𝑋 +Q 𝑋) <Q 𝑌)
22 ltsonq 7581 . . . . . . . 8 <Q Or Q
2322, 2sotri 5123 . . . . . . 7 ((((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q (𝑋 +Q 𝑋) ∧ (𝑋 +Q 𝑋) <Q 𝑌) → ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑌)
2420, 21, 23syl2anc 411 . . . . . 6 (𝜑 → ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑌)
25 ltanqi 7585 . . . . . 6 ((((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑌𝑆Q) → (𝑆 +Q ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))) <Q (𝑆 +Q 𝑌))
2624, 5, 25syl2anc 411 . . . . 5 (𝜑 → (𝑆 +Q ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))) <Q (𝑆 +Q 𝑌))
27 caucvgprprlemloccalc.syt . . . . 5 (𝜑 → (𝑆 +Q 𝑌) = 𝑇)
2826, 27breqtrd 4108 . . . 4 (𝜑 → (𝑆 +Q ((*Q‘[⟨𝑀, 1o⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))) <Q 𝑇)
2915, 28eqbrtrd 4104 . . 3 (𝜑 → ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑇)
30 ltnqpri 7777 . . 3 (((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑇 → ⟨{𝑙𝑙 <Q ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
3129, 30syl 14 . 2 (𝜑 → ⟨{𝑙𝑙 <Q ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ ((𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
3213, 31eqbrtrrd 4106 1 (𝜑 → (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  {cab 2215  cop 3669   class class class wbr 4082  cfv 5317  (class class class)co 6000  1oc1o 6553  [cec 6676  Ncnpi 7455   ~Q ceq 7462  Qcnq 7463   +Q cplq 7465  *Qcrq 7467   <Q cltq 7468   +P cpp 7476  <P cltp 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-2o 6561  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-enq0 7607  df-nq0 7608  df-0nq0 7609  df-plq0 7610  df-mq0 7611  df-inp 7649  df-iplp 7651  df-iltp 7653
This theorem is referenced by:  caucvgprprlemloc  7886
  Copyright terms: Public domain W3C validator