Proof of Theorem caucvgsrlemcau
| Step | Hyp | Ref
| Expression |
| 1 | | caucvgsr.cau |
. 2
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R )))) |
| 2 | | caucvgsr.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:N⟶R) |
| 3 | | caucvgsrlemgt1.gt1 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑚 ∈ N
1R <R (𝐹‘𝑚)) |
| 4 | | caucvgsrlemf.xfr |
. . . . . . . . . . 11
⊢ 𝐺 = (𝑥 ∈ N ↦
(℩𝑦 ∈
P (𝐹‘𝑥) = [〈(𝑦 +P
1P), 1P〉]
~R )) |
| 5 | 2, 1, 3, 4 | caucvgsrlemf 7859 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺:N⟶P) |
| 6 | 5 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
𝐺:N⟶P) |
| 7 | | simplr 528 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
𝑛 ∈
N) |
| 8 | 6, 7 | ffvelcdmd 5698 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
(𝐺‘𝑛) ∈ P) |
| 9 | 5 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ N) → 𝐺:N⟶P) |
| 10 | 9 | ffvelcdmda 5697 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
(𝐺‘𝑘) ∈ P) |
| 11 | | recnnpr 7615 |
. . . . . . . . . 10
⊢ (𝑛 ∈ N →
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 ∈
P) |
| 12 | 7, 11 | syl 14 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 ∈
P) |
| 13 | | addclpr 7604 |
. . . . . . . . 9
⊢ (((𝐺‘𝑘) ∈ P ∧ 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 ∈ P) →
((𝐺‘𝑘) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∈
P) |
| 14 | 10, 12, 13 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝐺‘𝑘) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∈
P) |
| 15 | | prsrlt 7854 |
. . . . . . . 8
⊢ (((𝐺‘𝑛) ∈ P ∧ ((𝐺‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∈ P) →
((𝐺‘𝑛)<P
((𝐺‘𝑘) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ↔ [〈((𝐺‘𝑛) +P
1P), 1P〉]
~R <R [〈(((𝐺‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) +P
1P), 1P〉]
~R )) |
| 16 | 8, 14, 15 | syl2anc 411 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝐺‘𝑛)<P
((𝐺‘𝑘) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ↔ [〈((𝐺‘𝑛) +P
1P), 1P〉]
~R <R [〈(((𝐺‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) +P
1P), 1P〉]
~R )) |
| 17 | 2, 1, 3, 4 | caucvgsrlemfv 7858 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ N) →
[〈((𝐺‘𝑛) +P
1P), 1P〉]
~R = (𝐹‘𝑛)) |
| 18 | 17 | adantr 276 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
[〈((𝐺‘𝑛) +P
1P), 1P〉]
~R = (𝐹‘𝑛)) |
| 19 | | prsradd 7853 |
. . . . . . . . . 10
⊢ (((𝐺‘𝑘) ∈ P ∧ 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 ∈ P) →
[〈(((𝐺‘𝑘) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) +P
1P), 1P〉]
~R = ([〈((𝐺‘𝑘) +P
1P), 1P〉]
~R +R [〈(〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R )) |
| 20 | 10, 12, 19 | syl2anc 411 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
[〈(((𝐺‘𝑘) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) +P
1P), 1P〉]
~R = ([〈((𝐺‘𝑘) +P
1P), 1P〉]
~R +R [〈(〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R )) |
| 21 | 2, 1, 3, 4 | caucvgsrlemfv 7858 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ N) →
[〈((𝐺‘𝑘) +P
1P), 1P〉]
~R = (𝐹‘𝑘)) |
| 22 | 21 | adantlr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
[〈((𝐺‘𝑘) +P
1P), 1P〉]
~R = (𝐹‘𝑘)) |
| 23 | 22 | oveq1d 5937 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
([〈((𝐺‘𝑘) +P
1P), 1P〉]
~R +R [〈(〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) = ((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R )) |
| 24 | 20, 23 | eqtrd 2229 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
[〈(((𝐺‘𝑘) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) +P
1P), 1P〉]
~R = ((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R )) |
| 25 | 18, 24 | breq12d 4046 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
([〈((𝐺‘𝑛) +P
1P), 1P〉]
~R <R [〈(((𝐺‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) +P
1P), 1P〉]
~R ↔ (𝐹‘𝑛) <R ((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ))) |
| 26 | 16, 25 | bitrd 188 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝐺‘𝑛)<P
((𝐺‘𝑘) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ↔ (𝐹‘𝑛) <R ((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ))) |
| 27 | | addclpr 7604 |
. . . . . . . . 9
⊢ (((𝐺‘𝑛) ∈ P ∧ 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 ∈ P) →
((𝐺‘𝑛) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∈
P) |
| 28 | 8, 12, 27 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝐺‘𝑛) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∈
P) |
| 29 | | prsrlt 7854 |
. . . . . . . 8
⊢ (((𝐺‘𝑘) ∈ P ∧ ((𝐺‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∈ P) →
((𝐺‘𝑘)<P
((𝐺‘𝑛) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ↔ [〈((𝐺‘𝑘) +P
1P), 1P〉]
~R <R [〈(((𝐺‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) +P
1P), 1P〉]
~R )) |
| 30 | 10, 28, 29 | syl2anc 411 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝐺‘𝑘)<P
((𝐺‘𝑛) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ↔ [〈((𝐺‘𝑘) +P
1P), 1P〉]
~R <R [〈(((𝐺‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) +P
1P), 1P〉]
~R )) |
| 31 | | prsradd 7853 |
. . . . . . . . . 10
⊢ (((𝐺‘𝑛) ∈ P ∧ 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 ∈ P) →
[〈(((𝐺‘𝑛) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) +P
1P), 1P〉]
~R = ([〈((𝐺‘𝑛) +P
1P), 1P〉]
~R +R [〈(〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R )) |
| 32 | 8, 12, 31 | syl2anc 411 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
[〈(((𝐺‘𝑛) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) +P
1P), 1P〉]
~R = ([〈((𝐺‘𝑛) +P
1P), 1P〉]
~R +R [〈(〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R )) |
| 33 | 18 | oveq1d 5937 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
([〈((𝐺‘𝑛) +P
1P), 1P〉]
~R +R [〈(〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) = ((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R )) |
| 34 | 32, 33 | eqtrd 2229 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
[〈(((𝐺‘𝑛) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) +P
1P), 1P〉]
~R = ((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R )) |
| 35 | 22, 34 | breq12d 4046 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
([〈((𝐺‘𝑘) +P
1P), 1P〉]
~R <R [〈(((𝐺‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) +P
1P), 1P〉]
~R ↔ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ))) |
| 36 | 30, 35 | bitrd 188 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝐺‘𝑘)<P
((𝐺‘𝑛) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ↔ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ))) |
| 37 | 26, 36 | anbi12d 473 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
(((𝐺‘𝑛)<P
((𝐺‘𝑘) +P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐺‘𝑘)<P ((𝐺‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉)) ↔ ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R )))) |
| 38 | 37 | imbi2d 230 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝑛
<N 𝑘 → ((𝐺‘𝑛)<P ((𝐺‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐺‘𝑘)<P ((𝐺‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉))) ↔ (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ))))) |
| 39 | 38 | ralbidva 2493 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ N) →
(∀𝑘 ∈
N (𝑛
<N 𝑘 → ((𝐺‘𝑛)<P ((𝐺‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐺‘𝑘)<P ((𝐺‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉))) ↔ ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ))))) |
| 40 | 39 | ralbidva 2493 |
. 2
⊢ (𝜑 → (∀𝑛 ∈ N
∀𝑘 ∈
N (𝑛
<N 𝑘 → ((𝐺‘𝑛)<P ((𝐺‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐺‘𝑘)<P ((𝐺‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉))) ↔ ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ))))) |
| 41 | 1, 40 | mpbird 167 |
1
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐺‘𝑛)<P ((𝐺‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐺‘𝑘)<P ((𝐺‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉)))) |