ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumadd Unicode version

Theorem isumadd 11596
Description: Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumadd.1  |-  Z  =  ( ZZ>= `  M )
isumadd.2  |-  ( ph  ->  M  e.  ZZ )
isumadd.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
isumadd.4  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
isumadd.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  B )
isumadd.6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
isumadd.7  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
isumadd.8  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
Assertion
Ref Expression
isumadd  |-  ( ph  -> 
sum_ k  e.  Z  ( A  +  B
)  =  ( sum_ k  e.  Z  A  +  sum_ k  e.  Z  B ) )
Distinct variable groups:    k, F    k, G    k, M    ph, k    k, Z
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem isumadd
Dummy variables  j  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumadd.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 isumadd.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 simpr 110 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
4 isumadd.3 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
5 isumadd.4 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
64, 5eqeltrd 2273 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
7 isumadd.5 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  B )
8 isumadd.6 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
97, 8eqeltrd 2273 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
106, 9addcld 8046 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  +  ( G `
 k ) )  e.  CC )
11 fveq2 5558 . . . . . 6  |-  ( m  =  k  ->  ( F `  m )  =  ( F `  k ) )
12 fveq2 5558 . . . . . 6  |-  ( m  =  k  ->  ( G `  m )  =  ( G `  k ) )
1311, 12oveq12d 5940 . . . . 5  |-  ( m  =  k  ->  (
( F `  m
)  +  ( G `
 m ) )  =  ( ( F `
 k )  +  ( G `  k
) ) )
14 eqid 2196 . . . . 5  |-  ( m  e.  Z  |->  ( ( F `  m )  +  ( G `  m ) ) )  =  ( m  e.  Z  |->  ( ( F `
 m )  +  ( G `  m
) ) )
1513, 14fvmptg 5637 . . . 4  |-  ( ( k  e.  Z  /\  ( ( F `  k )  +  ( G `  k ) )  e.  CC )  ->  ( ( m  e.  Z  |->  ( ( F `  m )  +  ( G `  m ) ) ) `
 k )  =  ( ( F `  k )  +  ( G `  k ) ) )
163, 10, 15syl2anc 411 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( m  e.  Z  |->  ( ( F `  m )  +  ( G `  m ) ) ) `  k
)  =  ( ( F `  k )  +  ( G `  k ) ) )
174, 7oveq12d 5940 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  +  ( G `
 k ) )  =  ( A  +  B ) )
1816, 17eqtrd 2229 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  (
( m  e.  Z  |->  ( ( F `  m )  +  ( G `  m ) ) ) `  k
)  =  ( A  +  B ) )
195, 8addcld 8046 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( A  +  B )  e.  CC )
20 isumadd.7 . . . 4  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
211, 2, 4, 5, 20isumclim2 11587 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  sum_ k  e.  Z  A )
22 seqex 10541 . . . 4  |-  seq M
(  +  ,  ( m  e.  Z  |->  ( ( F `  m
)  +  ( G `
 m ) ) ) )  e.  _V
2322a1i 9 . . 3  |-  ( ph  ->  seq M (  +  ,  ( m  e.  Z  |->  ( ( F `
 m )  +  ( G `  m
) ) ) )  e.  _V )
24 isumadd.8 . . . 4  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
251, 2, 7, 8, 24isumclim2 11587 . . 3  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  sum_ k  e.  Z  B )
261, 2, 6serf 10575 . . . 4  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
2726ffvelcdmda 5697 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  F ) `  j
)  e.  CC )
281, 2, 9serf 10575 . . . 4  |-  ( ph  ->  seq M (  +  ,  G ) : Z --> CC )
2928ffvelcdmda 5697 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  G ) `  j
)  e.  CC )
30 simpr 110 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  Z )
3130, 1eleqtrdi 2289 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  M )
)
32 simpll 527 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ph )
331eleq2i 2263 . . . . . . 7  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
3433biimpri 133 . . . . . 6  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  Z )
3534adantl 277 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  Z )
3632, 35, 6syl2anc 411 . . . 4  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3732, 35, 9syl2anc 411 . . . 4  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
3832, 35, 10syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( F `  k )  +  ( G `  k ) )  e.  CC )
3935, 38, 15syl2anc 411 . . . 4  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
m  e.  Z  |->  ( ( F `  m
)  +  ( G `
 m ) ) ) `  k )  =  ( ( F `
 k )  +  ( G `  k
) ) )
4031, 36, 37, 39ser3add 10614 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  , 
( m  e.  Z  |->  ( ( F `  m )  +  ( G `  m ) ) ) ) `  j )  =  ( (  seq M (  +  ,  F ) `
 j )  +  (  seq M (  +  ,  G ) `
 j ) ) )
411, 2, 21, 23, 25, 27, 29, 40climadd 11491 . 2  |-  ( ph  ->  seq M (  +  ,  ( m  e.  Z  |->  ( ( F `
 m )  +  ( G `  m
) ) ) )  ~~>  ( sum_ k  e.  Z  A  +  sum_ k  e.  Z  B ) )
421, 2, 18, 19, 41isumclim 11586 1  |-  ( ph  -> 
sum_ k  e.  Z  ( A  +  B
)  =  ( sum_ k  e.  Z  A  +  sum_ k  e.  Z  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    |-> cmpt 4094   dom cdm 4663   ` cfv 5258  (class class class)co 5922   CCcc 7877    + caddc 7882   ZZcz 9326   ZZ>=cuz 9601    seqcseq 10539    ~~> cli 11443   sum_csu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  sumsplitdc  11597
  Copyright terms: Public domain W3C validator