ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumadd Unicode version

Theorem isumadd 11232
Description: Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumadd.1  |-  Z  =  ( ZZ>= `  M )
isumadd.2  |-  ( ph  ->  M  e.  ZZ )
isumadd.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
isumadd.4  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
isumadd.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  B )
isumadd.6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
isumadd.7  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
isumadd.8  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
Assertion
Ref Expression
isumadd  |-  ( ph  -> 
sum_ k  e.  Z  ( A  +  B
)  =  ( sum_ k  e.  Z  A  +  sum_ k  e.  Z  B ) )
Distinct variable groups:    k, F    k, G    k, M    ph, k    k, Z
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem isumadd
Dummy variables  j  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumadd.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 isumadd.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 simpr 109 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
4 isumadd.3 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
5 isumadd.4 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
64, 5eqeltrd 2217 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
7 isumadd.5 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  B )
8 isumadd.6 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
97, 8eqeltrd 2217 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
106, 9addcld 7809 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  +  ( G `
 k ) )  e.  CC )
11 fveq2 5429 . . . . . 6  |-  ( m  =  k  ->  ( F `  m )  =  ( F `  k ) )
12 fveq2 5429 . . . . . 6  |-  ( m  =  k  ->  ( G `  m )  =  ( G `  k ) )
1311, 12oveq12d 5800 . . . . 5  |-  ( m  =  k  ->  (
( F `  m
)  +  ( G `
 m ) )  =  ( ( F `
 k )  +  ( G `  k
) ) )
14 eqid 2140 . . . . 5  |-  ( m  e.  Z  |->  ( ( F `  m )  +  ( G `  m ) ) )  =  ( m  e.  Z  |->  ( ( F `
 m )  +  ( G `  m
) ) )
1513, 14fvmptg 5505 . . . 4  |-  ( ( k  e.  Z  /\  ( ( F `  k )  +  ( G `  k ) )  e.  CC )  ->  ( ( m  e.  Z  |->  ( ( F `  m )  +  ( G `  m ) ) ) `
 k )  =  ( ( F `  k )  +  ( G `  k ) ) )
163, 10, 15syl2anc 409 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( m  e.  Z  |->  ( ( F `  m )  +  ( G `  m ) ) ) `  k
)  =  ( ( F `  k )  +  ( G `  k ) ) )
174, 7oveq12d 5800 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  +  ( G `
 k ) )  =  ( A  +  B ) )
1816, 17eqtrd 2173 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  (
( m  e.  Z  |->  ( ( F `  m )  +  ( G `  m ) ) ) `  k
)  =  ( A  +  B ) )
195, 8addcld 7809 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( A  +  B )  e.  CC )
20 isumadd.7 . . . 4  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
211, 2, 4, 5, 20isumclim2 11223 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  sum_ k  e.  Z  A )
22 seqex 10251 . . . 4  |-  seq M
(  +  ,  ( m  e.  Z  |->  ( ( F `  m
)  +  ( G `
 m ) ) ) )  e.  _V
2322a1i 9 . . 3  |-  ( ph  ->  seq M (  +  ,  ( m  e.  Z  |->  ( ( F `
 m )  +  ( G `  m
) ) ) )  e.  _V )
24 isumadd.8 . . . 4  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
251, 2, 7, 8, 24isumclim2 11223 . . 3  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  sum_ k  e.  Z  B )
261, 2, 6serf 10278 . . . 4  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
2726ffvelrnda 5563 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  F ) `  j
)  e.  CC )
281, 2, 9serf 10278 . . . 4  |-  ( ph  ->  seq M (  +  ,  G ) : Z --> CC )
2928ffvelrnda 5563 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  G ) `  j
)  e.  CC )
30 simpr 109 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  Z )
3130, 1eleqtrdi 2233 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  M )
)
32 simpll 519 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ph )
331eleq2i 2207 . . . . . . 7  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
3433biimpri 132 . . . . . 6  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  Z )
3534adantl 275 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  Z )
3632, 35, 6syl2anc 409 . . . 4  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3732, 35, 9syl2anc 409 . . . 4  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
3832, 35, 10syl2anc 409 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( F `  k )  +  ( G `  k ) )  e.  CC )
3935, 38, 15syl2anc 409 . . . 4  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
m  e.  Z  |->  ( ( F `  m
)  +  ( G `
 m ) ) ) `  k )  =  ( ( F `
 k )  +  ( G `  k
) ) )
4031, 36, 37, 39ser3add 10309 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  , 
( m  e.  Z  |->  ( ( F `  m )  +  ( G `  m ) ) ) ) `  j )  =  ( (  seq M (  +  ,  F ) `
 j )  +  (  seq M (  +  ,  G ) `
 j ) ) )
411, 2, 21, 23, 25, 27, 29, 40climadd 11127 . 2  |-  ( ph  ->  seq M (  +  ,  ( m  e.  Z  |->  ( ( F `
 m )  +  ( G `  m
) ) ) )  ~~>  ( sum_ k  e.  Z  A  +  sum_ k  e.  Z  B ) )
421, 2, 18, 19, 41isumclim 11222 1  |-  ( ph  -> 
sum_ k  e.  Z  ( A  +  B
)  =  ( sum_ k  e.  Z  A  +  sum_ k  e.  Z  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   _Vcvv 2689    |-> cmpt 3997   dom cdm 4547   ` cfv 5131  (class class class)co 5782   CCcc 7642    + caddc 7647   ZZcz 9078   ZZ>=cuz 9350    seqcseq 10249    ~~> cli 11079   sum_csu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  sumsplitdc  11233
  Copyright terms: Public domain W3C validator