ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumadd Unicode version

Theorem isumadd 11193
Description: Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumadd.1  |-  Z  =  ( ZZ>= `  M )
isumadd.2  |-  ( ph  ->  M  e.  ZZ )
isumadd.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
isumadd.4  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
isumadd.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  B )
isumadd.6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
isumadd.7  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
isumadd.8  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
Assertion
Ref Expression
isumadd  |-  ( ph  -> 
sum_ k  e.  Z  ( A  +  B
)  =  ( sum_ k  e.  Z  A  +  sum_ k  e.  Z  B ) )
Distinct variable groups:    k, F    k, G    k, M    ph, k    k, Z
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem isumadd
Dummy variables  j  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumadd.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 isumadd.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 simpr 109 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
4 isumadd.3 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
5 isumadd.4 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
64, 5eqeltrd 2214 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
7 isumadd.5 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  B )
8 isumadd.6 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
97, 8eqeltrd 2214 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
106, 9addcld 7778 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  +  ( G `
 k ) )  e.  CC )
11 fveq2 5414 . . . . . 6  |-  ( m  =  k  ->  ( F `  m )  =  ( F `  k ) )
12 fveq2 5414 . . . . . 6  |-  ( m  =  k  ->  ( G `  m )  =  ( G `  k ) )
1311, 12oveq12d 5785 . . . . 5  |-  ( m  =  k  ->  (
( F `  m
)  +  ( G `
 m ) )  =  ( ( F `
 k )  +  ( G `  k
) ) )
14 eqid 2137 . . . . 5  |-  ( m  e.  Z  |->  ( ( F `  m )  +  ( G `  m ) ) )  =  ( m  e.  Z  |->  ( ( F `
 m )  +  ( G `  m
) ) )
1513, 14fvmptg 5490 . . . 4  |-  ( ( k  e.  Z  /\  ( ( F `  k )  +  ( G `  k ) )  e.  CC )  ->  ( ( m  e.  Z  |->  ( ( F `  m )  +  ( G `  m ) ) ) `
 k )  =  ( ( F `  k )  +  ( G `  k ) ) )
163, 10, 15syl2anc 408 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( m  e.  Z  |->  ( ( F `  m )  +  ( G `  m ) ) ) `  k
)  =  ( ( F `  k )  +  ( G `  k ) ) )
174, 7oveq12d 5785 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  +  ( G `
 k ) )  =  ( A  +  B ) )
1816, 17eqtrd 2170 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  (
( m  e.  Z  |->  ( ( F `  m )  +  ( G `  m ) ) ) `  k
)  =  ( A  +  B ) )
195, 8addcld 7778 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( A  +  B )  e.  CC )
20 isumadd.7 . . . 4  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
211, 2, 4, 5, 20isumclim2 11184 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  sum_ k  e.  Z  A )
22 seqex 10213 . . . 4  |-  seq M
(  +  ,  ( m  e.  Z  |->  ( ( F `  m
)  +  ( G `
 m ) ) ) )  e.  _V
2322a1i 9 . . 3  |-  ( ph  ->  seq M (  +  ,  ( m  e.  Z  |->  ( ( F `
 m )  +  ( G `  m
) ) ) )  e.  _V )
24 isumadd.8 . . . 4  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
251, 2, 7, 8, 24isumclim2 11184 . . 3  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  sum_ k  e.  Z  B )
261, 2, 6serf 10240 . . . 4  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
2726ffvelrnda 5548 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  F ) `  j
)  e.  CC )
281, 2, 9serf 10240 . . . 4  |-  ( ph  ->  seq M (  +  ,  G ) : Z --> CC )
2928ffvelrnda 5548 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  G ) `  j
)  e.  CC )
30 simpr 109 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  Z )
3130, 1eleqtrdi 2230 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  M )
)
32 simpll 518 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ph )
331eleq2i 2204 . . . . . . 7  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
3433biimpri 132 . . . . . 6  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  Z )
3534adantl 275 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  Z )
3632, 35, 6syl2anc 408 . . . 4  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3732, 35, 9syl2anc 408 . . . 4  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
3832, 35, 10syl2anc 408 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( F `  k )  +  ( G `  k ) )  e.  CC )
3935, 38, 15syl2anc 408 . . . 4  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
m  e.  Z  |->  ( ( F `  m
)  +  ( G `
 m ) ) ) `  k )  =  ( ( F `
 k )  +  ( G `  k
) ) )
4031, 36, 37, 39ser3add 10271 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  , 
( m  e.  Z  |->  ( ( F `  m )  +  ( G `  m ) ) ) ) `  j )  =  ( (  seq M (  +  ,  F ) `
 j )  +  (  seq M (  +  ,  G ) `
 j ) ) )
411, 2, 21, 23, 25, 27, 29, 40climadd 11088 . 2  |-  ( ph  ->  seq M (  +  ,  ( m  e.  Z  |->  ( ( F `
 m )  +  ( G `  m
) ) ) )  ~~>  ( sum_ k  e.  Z  A  +  sum_ k  e.  Z  B ) )
421, 2, 18, 19, 41isumclim 11183 1  |-  ( ph  -> 
sum_ k  e.  Z  ( A  +  B
)  =  ( sum_ k  e.  Z  A  +  sum_ k  e.  Z  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   _Vcvv 2681    |-> cmpt 3984   dom cdm 4534   ` cfv 5118  (class class class)co 5767   CCcc 7611    + caddc 7616   ZZcz 9047   ZZ>=cuz 9319    seqcseq 10211    ~~> cli 11040   sum_csu 11115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-frec 6281  df-1o 6306  df-oadd 6310  df-er 6422  df-en 6628  df-dom 6629  df-fin 6630  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fzo 9913  df-seqfrec 10212  df-exp 10286  df-ihash 10515  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-clim 11041  df-sumdc 11116
This theorem is referenced by:  sumsplitdc  11194
  Copyright terms: Public domain W3C validator