| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > crngridl | GIF version | ||
| Description: In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| crng2idl.i | ⊢ 𝐼 = (LIdeal‘𝑅) |
| crngridl.o | ⊢ 𝑂 = (oppr‘𝑅) |
| Ref | Expression |
|---|---|
| crngridl | ⊢ (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crng2idl.i | . 2 ⊢ 𝐼 = (LIdeal‘𝑅) | |
| 2 | eqidd 2230 | . . . 4 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑅)) | |
| 3 | crngridl.o | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
| 4 | eqid 2229 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | 3, 4 | opprbasg 14033 | . . . 4 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑂)) |
| 6 | ssv 3246 | . . . . 5 ⊢ (Base‘𝑅) ⊆ V | |
| 7 | 6 | a1i 9 | . . . 4 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) ⊆ V) |
| 8 | eqid 2229 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 9 | 3, 8 | oppraddg 14034 | . . . . 5 ⊢ (𝑅 ∈ CRing → (+g‘𝑅) = (+g‘𝑂)) |
| 10 | 9 | oveqdr 6028 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑂)𝑦)) |
| 11 | simprl 529 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅)) | |
| 12 | mulrslid 13160 | . . . . . . 7 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 13 | 12 | slotex 13054 | . . . . . 6 ⊢ (𝑅 ∈ CRing → (.r‘𝑅) ∈ V) |
| 14 | 13 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (.r‘𝑅) ∈ V) |
| 15 | simprr 531 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅)) | |
| 16 | ovexg 6034 | . . . . 5 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ (.r‘𝑅) ∈ V ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)𝑦) ∈ V) | |
| 17 | 11, 14, 15, 16 | syl3anc 1271 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) ∈ V) |
| 18 | eqid 2229 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 19 | eqid 2229 | . . . . . 6 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
| 20 | 4, 18, 3, 19 | crngoppr 14030 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑂)𝑦)) |
| 21 | 20 | 3expb 1228 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑂)𝑦)) |
| 22 | id 19 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ CRing) | |
| 23 | 3 | opprex 14031 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑂 ∈ V) |
| 24 | 2, 5, 7, 10, 17, 21, 22, 23 | lidlrsppropdg 14453 | . . 3 ⊢ (𝑅 ∈ CRing → ((LIdeal‘𝑅) = (LIdeal‘𝑂) ∧ (RSpan‘𝑅) = (RSpan‘𝑂))) |
| 25 | 24 | simpld 112 | . 2 ⊢ (𝑅 ∈ CRing → (LIdeal‘𝑅) = (LIdeal‘𝑂)) |
| 26 | 1, 25 | eqtrid 2274 | 1 ⊢ (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 ‘cfv 5317 (class class class)co 6000 Basecbs 13027 +gcplusg 13105 .rcmulr 13106 CRingccrg 13955 opprcoppr 14025 LIdealclidl 14425 RSpancrsp 14426 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-tpos 6389 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-iress 13035 df-plusg 13118 df-mulr 13119 df-sca 13121 df-vsca 13122 df-ip 13123 df-cmn 13818 df-mgp 13879 df-cring 13957 df-oppr 14026 df-lssm 14311 df-lsp 14345 df-sra 14393 df-rgmod 14394 df-lidl 14427 df-rsp 14428 |
| This theorem is referenced by: crng2idl 14489 |
| Copyright terms: Public domain | W3C validator |