| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > crngridl | GIF version | ||
| Description: In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| crng2idl.i | ⊢ 𝐼 = (LIdeal‘𝑅) |
| crngridl.o | ⊢ 𝑂 = (oppr‘𝑅) |
| Ref | Expression |
|---|---|
| crngridl | ⊢ (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crng2idl.i | . 2 ⊢ 𝐼 = (LIdeal‘𝑅) | |
| 2 | eqidd 2207 | . . . 4 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑅)) | |
| 3 | crngridl.o | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
| 4 | eqid 2206 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | 3, 4 | opprbasg 13912 | . . . 4 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑂)) |
| 6 | ssv 3219 | . . . . 5 ⊢ (Base‘𝑅) ⊆ V | |
| 7 | 6 | a1i 9 | . . . 4 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) ⊆ V) |
| 8 | eqid 2206 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 9 | 3, 8 | oppraddg 13913 | . . . . 5 ⊢ (𝑅 ∈ CRing → (+g‘𝑅) = (+g‘𝑂)) |
| 10 | 9 | oveqdr 5985 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑂)𝑦)) |
| 11 | simprl 529 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅)) | |
| 12 | mulrslid 13039 | . . . . . . 7 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 13 | 12 | slotex 12934 | . . . . . 6 ⊢ (𝑅 ∈ CRing → (.r‘𝑅) ∈ V) |
| 14 | 13 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (.r‘𝑅) ∈ V) |
| 15 | simprr 531 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅)) | |
| 16 | ovexg 5991 | . . . . 5 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ (.r‘𝑅) ∈ V ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)𝑦) ∈ V) | |
| 17 | 11, 14, 15, 16 | syl3anc 1250 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) ∈ V) |
| 18 | eqid 2206 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 19 | eqid 2206 | . . . . . 6 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
| 20 | 4, 18, 3, 19 | crngoppr 13909 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑂)𝑦)) |
| 21 | 20 | 3expb 1207 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑂)𝑦)) |
| 22 | id 19 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ CRing) | |
| 23 | 3 | opprex 13910 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑂 ∈ V) |
| 24 | 2, 5, 7, 10, 17, 21, 22, 23 | lidlrsppropdg 14332 | . . 3 ⊢ (𝑅 ∈ CRing → ((LIdeal‘𝑅) = (LIdeal‘𝑂) ∧ (RSpan‘𝑅) = (RSpan‘𝑂))) |
| 25 | 24 | simpld 112 | . 2 ⊢ (𝑅 ∈ CRing → (LIdeal‘𝑅) = (LIdeal‘𝑂)) |
| 26 | 1, 25 | eqtrid 2251 | 1 ⊢ (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3170 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 +gcplusg 12984 .rcmulr 12985 CRingccrg 13834 opprcoppr 13904 LIdealclidl 14304 RSpancrsp 14305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-tpos 6344 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-iress 12915 df-plusg 12997 df-mulr 12998 df-sca 13000 df-vsca 13001 df-ip 13002 df-cmn 13697 df-mgp 13758 df-cring 13836 df-oppr 13905 df-lssm 14190 df-lsp 14224 df-sra 14272 df-rgmod 14273 df-lidl 14306 df-rsp 14307 |
| This theorem is referenced by: crng2idl 14368 |
| Copyright terms: Public domain | W3C validator |