![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > crngridl | GIF version |
Description: In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
crng2idl.i | ⊢ 𝐼 = (LIdeal‘𝑅) |
crngridl.o | ⊢ 𝑂 = (oppr‘𝑅) |
Ref | Expression |
---|---|
crngridl | ⊢ (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crng2idl.i | . 2 ⊢ 𝐼 = (LIdeal‘𝑅) | |
2 | eqidd 2194 | . . . 4 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑅)) | |
3 | crngridl.o | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
4 | eqid 2193 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | 3, 4 | opprbasg 13574 | . . . 4 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑂)) |
6 | ssv 3202 | . . . . 5 ⊢ (Base‘𝑅) ⊆ V | |
7 | 6 | a1i 9 | . . . 4 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) ⊆ V) |
8 | eqid 2193 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
9 | 3, 8 | oppraddg 13575 | . . . . 5 ⊢ (𝑅 ∈ CRing → (+g‘𝑅) = (+g‘𝑂)) |
10 | 9 | oveqdr 5947 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑂)𝑦)) |
11 | simprl 529 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅)) | |
12 | mulrslid 12752 | . . . . . . 7 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
13 | 12 | slotex 12648 | . . . . . 6 ⊢ (𝑅 ∈ CRing → (.r‘𝑅) ∈ V) |
14 | 13 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (.r‘𝑅) ∈ V) |
15 | simprr 531 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅)) | |
16 | ovexg 5953 | . . . . 5 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ (.r‘𝑅) ∈ V ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)𝑦) ∈ V) | |
17 | 11, 14, 15, 16 | syl3anc 1249 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) ∈ V) |
18 | eqid 2193 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
19 | eqid 2193 | . . . . . 6 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
20 | 4, 18, 3, 19 | crngoppr 13571 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑂)𝑦)) |
21 | 20 | 3expb 1206 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑂)𝑦)) |
22 | id 19 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ CRing) | |
23 | 3 | opprex 13572 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑂 ∈ V) |
24 | 2, 5, 7, 10, 17, 21, 22, 23 | lidlrsppropdg 13994 | . . 3 ⊢ (𝑅 ∈ CRing → ((LIdeal‘𝑅) = (LIdeal‘𝑂) ∧ (RSpan‘𝑅) = (RSpan‘𝑂))) |
25 | 24 | simpld 112 | . 2 ⊢ (𝑅 ∈ CRing → (LIdeal‘𝑅) = (LIdeal‘𝑂)) |
26 | 1, 25 | eqtrid 2238 | 1 ⊢ (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3154 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 +gcplusg 12698 .rcmulr 12699 CRingccrg 13496 opprcoppr 13566 LIdealclidl 13966 RSpancrsp 13967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-tpos 6300 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-plusg 12711 df-mulr 12712 df-sca 12714 df-vsca 12715 df-ip 12716 df-cmn 13359 df-mgp 13420 df-cring 13498 df-oppr 13567 df-lssm 13852 df-lsp 13886 df-sra 13934 df-rgmod 13935 df-lidl 13968 df-rsp 13969 |
This theorem is referenced by: crng2idl 14030 |
Copyright terms: Public domain | W3C validator |