![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > crngridl | GIF version |
Description: In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
crng2idl.i | ⊢ 𝐼 = (LIdeal‘𝑅) |
crngridl.o | ⊢ 𝑂 = (oppr‘𝑅) |
Ref | Expression |
---|---|
crngridl | ⊢ (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crng2idl.i | . 2 ⊢ 𝐼 = (LIdeal‘𝑅) | |
2 | eqidd 2190 | . . . 4 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑅)) | |
3 | crngridl.o | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
4 | eqid 2189 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | 3, 4 | opprbasg 13422 | . . . 4 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑂)) |
6 | ssv 3192 | . . . . 5 ⊢ (Base‘𝑅) ⊆ V | |
7 | 6 | a1i 9 | . . . 4 ⊢ (𝑅 ∈ CRing → (Base‘𝑅) ⊆ V) |
8 | eqid 2189 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
9 | 3, 8 | oppraddg 13423 | . . . . 5 ⊢ (𝑅 ∈ CRing → (+g‘𝑅) = (+g‘𝑂)) |
10 | 9 | oveqdr 5923 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑂)𝑦)) |
11 | simprl 529 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅)) | |
12 | mulrslid 12640 | . . . . . . 7 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
13 | 12 | slotex 12538 | . . . . . 6 ⊢ (𝑅 ∈ CRing → (.r‘𝑅) ∈ V) |
14 | 13 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (.r‘𝑅) ∈ V) |
15 | simprr 531 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅)) | |
16 | ovexg 5929 | . . . . 5 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ (.r‘𝑅) ∈ V ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)𝑦) ∈ V) | |
17 | 11, 14, 15, 16 | syl3anc 1249 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) ∈ V) |
18 | eqid 2189 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
19 | eqid 2189 | . . . . . 6 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
20 | 4, 18, 3, 19 | crngoppr 13419 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑂)𝑦)) |
21 | 20 | 3expb 1206 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑂)𝑦)) |
22 | id 19 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ CRing) | |
23 | 3 | opprex 13420 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑂 ∈ V) |
24 | 2, 5, 7, 10, 17, 21, 22, 23 | lidlrsppropdg 13808 | . . 3 ⊢ (𝑅 ∈ CRing → ((LIdeal‘𝑅) = (LIdeal‘𝑂) ∧ (RSpan‘𝑅) = (RSpan‘𝑂))) |
25 | 24 | simpld 112 | . 2 ⊢ (𝑅 ∈ CRing → (LIdeal‘𝑅) = (LIdeal‘𝑂)) |
26 | 1, 25 | eqtrid 2234 | 1 ⊢ (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 Vcvv 2752 ⊆ wss 3144 ‘cfv 5235 (class class class)co 5895 Basecbs 12511 +gcplusg 12586 .rcmulr 12587 CRingccrg 13348 opprcoppr 13414 LIdealclidl 13780 RSpancrsp 13781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7931 ax-resscn 7932 ax-1cn 7933 ax-1re 7934 ax-icn 7935 ax-addcl 7936 ax-addrcl 7937 ax-mulcl 7938 ax-addcom 7940 ax-addass 7942 ax-i2m1 7945 ax-0lt1 7946 ax-0id 7948 ax-rnegex 7949 ax-pre-ltirr 7952 ax-pre-lttrn 7954 ax-pre-ltadd 7956 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5898 df-oprab 5899 df-mpo 5900 df-tpos 6269 df-pnf 8023 df-mnf 8024 df-ltxr 8026 df-inn 8949 df-2 9007 df-3 9008 df-4 9009 df-5 9010 df-6 9011 df-7 9012 df-8 9013 df-ndx 12514 df-slot 12515 df-base 12517 df-sets 12518 df-iress 12519 df-plusg 12599 df-mulr 12600 df-sca 12602 df-vsca 12603 df-ip 12604 df-cmn 13222 df-mgp 13272 df-cring 13350 df-oppr 13415 df-lssm 13666 df-lsp 13700 df-sra 13748 df-rgmod 13749 df-lidl 13782 df-rsp 13783 |
This theorem is referenced by: crng2idl 13842 |
Copyright terms: Public domain | W3C validator |