ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decsplit Unicode version

Theorem decsplit 12796
Description: Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.)
Hypotheses
Ref Expression
decsplit0.1  |-  A  e. 
NN0
decsplit.2  |-  B  e. 
NN0
decsplit.3  |-  D  e. 
NN0
decsplit.4  |-  M  e. 
NN0
decsplit.5  |-  ( M  +  1 )  =  N
decsplit.6  |-  ( ( A  x.  (; 1 0 ^ M
) )  +  B
)  =  C
Assertion
Ref Expression
decsplit  |-  ( ( A  x.  (; 1 0 ^ N
) )  + ; B D )  = ; C D

Proof of Theorem decsplit
StepHypRef Expression
1 10nn0 9528 . . . . . 6  |- ; 1 0  e.  NN0
2 decsplit0.1 . . . . . . 7  |-  A  e. 
NN0
3 decsplit.4 . . . . . . . 8  |-  M  e. 
NN0
41, 3nn0expcli 10717 . . . . . . 7  |-  (; 1 0 ^ M
)  e.  NN0
52, 4nn0mulcli 9340 . . . . . 6  |-  ( A  x.  (; 1 0 ^ M
) )  e.  NN0
61, 5nn0mulcli 9340 . . . . 5  |-  (; 1 0  x.  ( A  x.  (; 1 0 ^ M
) ) )  e. 
NN0
76nn0cni 9314 . . . 4  |-  (; 1 0  x.  ( A  x.  (; 1 0 ^ M
) ) )  e.  CC
8 decsplit.2 . . . . . 6  |-  B  e. 
NN0
91, 8nn0mulcli 9340 . . . . 5  |-  (; 1 0  x.  B
)  e.  NN0
109nn0cni 9314 . . . 4  |-  (; 1 0  x.  B
)  e.  CC
11 decsplit.3 . . . . 5  |-  D  e. 
NN0
1211nn0cni 9314 . . . 4  |-  D  e.  CC
137, 10, 12addassi 8087 . . 3  |-  ( ( (; 1 0  x.  ( A  x.  (; 1 0 ^ M
) ) )  +  (; 1 0  x.  B
) )  +  D
)  =  ( (; 1
0  x.  ( A  x.  (; 1 0 ^ M
) ) )  +  ( (; 1 0  x.  B
)  +  D ) )
141nn0cni 9314 . . . . . 6  |- ; 1 0  e.  CC
155nn0cni 9314 . . . . . 6  |-  ( A  x.  (; 1 0 ^ M
) )  e.  CC
168nn0cni 9314 . . . . . 6  |-  B  e.  CC
1714, 15, 16adddii 8089 . . . . 5  |-  (; 1 0  x.  (
( A  x.  (; 1 0 ^ M ) )  +  B ) )  =  ( (; 1 0  x.  ( A  x.  (; 1 0 ^ M
) ) )  +  (; 1 0  x.  B
) )
18 decsplit.6 . . . . . 6  |-  ( ( A  x.  (; 1 0 ^ M
) )  +  B
)  =  C
1918oveq2i 5962 . . . . 5  |-  (; 1 0  x.  (
( A  x.  (; 1 0 ^ M ) )  +  B ) )  =  (; 1 0  x.  C
)
2017, 19eqtr3i 2229 . . . 4  |-  ( (; 1
0  x.  ( A  x.  (; 1 0 ^ M
) ) )  +  (; 1 0  x.  B
) )  =  (; 1
0  x.  C )
2120oveq1i 5961 . . 3  |-  ( ( (; 1 0  x.  ( A  x.  (; 1 0 ^ M
) ) )  +  (; 1 0  x.  B
) )  +  D
)  =  ( (; 1
0  x.  C )  +  D )
2213, 21eqtr3i 2229 . 2  |-  ( (; 1
0  x.  ( A  x.  (; 1 0 ^ M
) ) )  +  ( (; 1 0  x.  B
)  +  D ) )  =  ( (; 1
0  x.  C )  +  D )
23 decsplit.5 . . . . . 6  |-  ( M  +  1 )  =  N
244nn0cni 9314 . . . . . . 7  |-  (; 1 0 ^ M
)  e.  CC
2524, 14mulcomi 8085 . . . . . 6  |-  ( (; 1
0 ^ M )  x. ; 1 0 )  =  (; 1 0  x.  (; 1 0 ^ M ) )
261, 3, 23, 25numexpp1 12791 . . . . 5  |-  (; 1 0 ^ N
)  =  (; 1 0  x.  (; 1 0 ^ M ) )
2726oveq2i 5962 . . . 4  |-  ( A  x.  (; 1 0 ^ N
) )  =  ( A  x.  (; 1 0  x.  (; 1 0 ^ M ) ) )
282nn0cni 9314 . . . . 5  |-  A  e.  CC
2928, 14, 24mul12i 8225 . . . 4  |-  ( A  x.  (; 1 0  x.  (; 1 0 ^ M ) ) )  =  (; 1 0  x.  ( A  x.  (; 1 0 ^ M
) ) )
3027, 29eqtri 2227 . . 3  |-  ( A  x.  (; 1 0 ^ N
) )  =  (; 1
0  x.  ( A  x.  (; 1 0 ^ M
) ) )
31 dfdec10 9514 . . 3  |- ; B D  =  ( (; 1 0  x.  B
)  +  D )
3230, 31oveq12i 5963 . 2  |-  ( ( A  x.  (; 1 0 ^ N
) )  + ; B D )  =  ( (; 1 0  x.  ( A  x.  (; 1 0 ^ M
) ) )  +  ( (; 1 0  x.  B
)  +  D ) )
33 dfdec10 9514 . 2  |- ; C D  =  ( (; 1 0  x.  C
)  +  D )
3422, 32, 333eqtr4i 2237 1  |-  ( ( A  x.  (; 1 0 ^ N
) )  + ; B D )  = ; C D
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2177  (class class class)co 5951   0cc0 7932   1c1 7933    + caddc 7935    x. cmul 7937   NN0cn0 9302  ;cdc 9511   ^cexp 10690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-z 9380  df-dec 9512  df-uz 9656  df-seqfrec 10600  df-exp 10691
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator