ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decsplit Unicode version

Theorem decsplit 12938
Description: Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.)
Hypotheses
Ref Expression
decsplit0.1  |-  A  e. 
NN0
decsplit.2  |-  B  e. 
NN0
decsplit.3  |-  D  e. 
NN0
decsplit.4  |-  M  e. 
NN0
decsplit.5  |-  ( M  +  1 )  =  N
decsplit.6  |-  ( ( A  x.  (; 1 0 ^ M
) )  +  B
)  =  C
Assertion
Ref Expression
decsplit  |-  ( ( A  x.  (; 1 0 ^ N
) )  + ; B D )  = ; C D

Proof of Theorem decsplit
StepHypRef Expression
1 10nn0 9583 . . . . . 6  |- ; 1 0  e.  NN0
2 decsplit0.1 . . . . . . 7  |-  A  e. 
NN0
3 decsplit.4 . . . . . . . 8  |-  M  e. 
NN0
41, 3nn0expcli 10774 . . . . . . 7  |-  (; 1 0 ^ M
)  e.  NN0
52, 4nn0mulcli 9395 . . . . . 6  |-  ( A  x.  (; 1 0 ^ M
) )  e.  NN0
61, 5nn0mulcli 9395 . . . . 5  |-  (; 1 0  x.  ( A  x.  (; 1 0 ^ M
) ) )  e. 
NN0
76nn0cni 9369 . . . 4  |-  (; 1 0  x.  ( A  x.  (; 1 0 ^ M
) ) )  e.  CC
8 decsplit.2 . . . . . 6  |-  B  e. 
NN0
91, 8nn0mulcli 9395 . . . . 5  |-  (; 1 0  x.  B
)  e.  NN0
109nn0cni 9369 . . . 4  |-  (; 1 0  x.  B
)  e.  CC
11 decsplit.3 . . . . 5  |-  D  e. 
NN0
1211nn0cni 9369 . . . 4  |-  D  e.  CC
137, 10, 12addassi 8142 . . 3  |-  ( ( (; 1 0  x.  ( A  x.  (; 1 0 ^ M
) ) )  +  (; 1 0  x.  B
) )  +  D
)  =  ( (; 1
0  x.  ( A  x.  (; 1 0 ^ M
) ) )  +  ( (; 1 0  x.  B
)  +  D ) )
141nn0cni 9369 . . . . . 6  |- ; 1 0  e.  CC
155nn0cni 9369 . . . . . 6  |-  ( A  x.  (; 1 0 ^ M
) )  e.  CC
168nn0cni 9369 . . . . . 6  |-  B  e.  CC
1714, 15, 16adddii 8144 . . . . 5  |-  (; 1 0  x.  (
( A  x.  (; 1 0 ^ M ) )  +  B ) )  =  ( (; 1 0  x.  ( A  x.  (; 1 0 ^ M
) ) )  +  (; 1 0  x.  B
) )
18 decsplit.6 . . . . . 6  |-  ( ( A  x.  (; 1 0 ^ M
) )  +  B
)  =  C
1918oveq2i 6005 . . . . 5  |-  (; 1 0  x.  (
( A  x.  (; 1 0 ^ M ) )  +  B ) )  =  (; 1 0  x.  C
)
2017, 19eqtr3i 2252 . . . 4  |-  ( (; 1
0  x.  ( A  x.  (; 1 0 ^ M
) ) )  +  (; 1 0  x.  B
) )  =  (; 1
0  x.  C )
2120oveq1i 6004 . . 3  |-  ( ( (; 1 0  x.  ( A  x.  (; 1 0 ^ M
) ) )  +  (; 1 0  x.  B
) )  +  D
)  =  ( (; 1
0  x.  C )  +  D )
2213, 21eqtr3i 2252 . 2  |-  ( (; 1
0  x.  ( A  x.  (; 1 0 ^ M
) ) )  +  ( (; 1 0  x.  B
)  +  D ) )  =  ( (; 1
0  x.  C )  +  D )
23 decsplit.5 . . . . . 6  |-  ( M  +  1 )  =  N
244nn0cni 9369 . . . . . . 7  |-  (; 1 0 ^ M
)  e.  CC
2524, 14mulcomi 8140 . . . . . 6  |-  ( (; 1
0 ^ M )  x. ; 1 0 )  =  (; 1 0  x.  (; 1 0 ^ M ) )
261, 3, 23, 25numexpp1 12933 . . . . 5  |-  (; 1 0 ^ N
)  =  (; 1 0  x.  (; 1 0 ^ M ) )
2726oveq2i 6005 . . . 4  |-  ( A  x.  (; 1 0 ^ N
) )  =  ( A  x.  (; 1 0  x.  (; 1 0 ^ M ) ) )
282nn0cni 9369 . . . . 5  |-  A  e.  CC
2928, 14, 24mul12i 8280 . . . 4  |-  ( A  x.  (; 1 0  x.  (; 1 0 ^ M ) ) )  =  (; 1 0  x.  ( A  x.  (; 1 0 ^ M
) ) )
3027, 29eqtri 2250 . . 3  |-  ( A  x.  (; 1 0 ^ N
) )  =  (; 1
0  x.  ( A  x.  (; 1 0 ^ M
) ) )
31 dfdec10 9569 . . 3  |- ; B D  =  ( (; 1 0  x.  B
)  +  D )
3230, 31oveq12i 6006 . 2  |-  ( ( A  x.  (; 1 0 ^ N
) )  + ; B D )  =  ( (; 1 0  x.  ( A  x.  (; 1 0 ^ M
) ) )  +  ( (; 1 0  x.  B
)  +  D ) )
33 dfdec10 9569 . 2  |- ; C D  =  ( (; 1 0  x.  C
)  +  D )
3422, 32, 333eqtr4i 2260 1  |-  ( ( A  x.  (; 1 0 ^ N
) )  + ; B D )  = ; C D
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200  (class class class)co 5994   0cc0 7987   1c1 7988    + caddc 7990    x. cmul 7992   NN0cn0 9357  ;cdc 9566   ^cexp 10747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-z 9435  df-dec 9567  df-uz 9711  df-seqfrec 10657  df-exp 10748
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator