ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decsplit Unicode version

Theorem decsplit 12574
Description: Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.)
Hypotheses
Ref Expression
decsplit0.1  |-  A  e. 
NN0
decsplit.2  |-  B  e. 
NN0
decsplit.3  |-  D  e. 
NN0
decsplit.4  |-  M  e. 
NN0
decsplit.5  |-  ( M  +  1 )  =  N
decsplit.6  |-  ( ( A  x.  (; 1 0 ^ M
) )  +  B
)  =  C
Assertion
Ref Expression
decsplit  |-  ( ( A  x.  (; 1 0 ^ N
) )  + ; B D )  = ; C D

Proof of Theorem decsplit
StepHypRef Expression
1 10nn0 9471 . . . . . 6  |- ; 1 0  e.  NN0
2 decsplit0.1 . . . . . . 7  |-  A  e. 
NN0
3 decsplit.4 . . . . . . . 8  |-  M  e. 
NN0
41, 3nn0expcli 10642 . . . . . . 7  |-  (; 1 0 ^ M
)  e.  NN0
52, 4nn0mulcli 9284 . . . . . 6  |-  ( A  x.  (; 1 0 ^ M
) )  e.  NN0
61, 5nn0mulcli 9284 . . . . 5  |-  (; 1 0  x.  ( A  x.  (; 1 0 ^ M
) ) )  e. 
NN0
76nn0cni 9258 . . . 4  |-  (; 1 0  x.  ( A  x.  (; 1 0 ^ M
) ) )  e.  CC
8 decsplit.2 . . . . . 6  |-  B  e. 
NN0
91, 8nn0mulcli 9284 . . . . 5  |-  (; 1 0  x.  B
)  e.  NN0
109nn0cni 9258 . . . 4  |-  (; 1 0  x.  B
)  e.  CC
11 decsplit.3 . . . . 5  |-  D  e. 
NN0
1211nn0cni 9258 . . . 4  |-  D  e.  CC
137, 10, 12addassi 8032 . . 3  |-  ( ( (; 1 0  x.  ( A  x.  (; 1 0 ^ M
) ) )  +  (; 1 0  x.  B
) )  +  D
)  =  ( (; 1
0  x.  ( A  x.  (; 1 0 ^ M
) ) )  +  ( (; 1 0  x.  B
)  +  D ) )
141nn0cni 9258 . . . . . 6  |- ; 1 0  e.  CC
155nn0cni 9258 . . . . . 6  |-  ( A  x.  (; 1 0 ^ M
) )  e.  CC
168nn0cni 9258 . . . . . 6  |-  B  e.  CC
1714, 15, 16adddii 8034 . . . . 5  |-  (; 1 0  x.  (
( A  x.  (; 1 0 ^ M ) )  +  B ) )  =  ( (; 1 0  x.  ( A  x.  (; 1 0 ^ M
) ) )  +  (; 1 0  x.  B
) )
18 decsplit.6 . . . . . 6  |-  ( ( A  x.  (; 1 0 ^ M
) )  +  B
)  =  C
1918oveq2i 5933 . . . . 5  |-  (; 1 0  x.  (
( A  x.  (; 1 0 ^ M ) )  +  B ) )  =  (; 1 0  x.  C
)
2017, 19eqtr3i 2219 . . . 4  |-  ( (; 1
0  x.  ( A  x.  (; 1 0 ^ M
) ) )  +  (; 1 0  x.  B
) )  =  (; 1
0  x.  C )
2120oveq1i 5932 . . 3  |-  ( ( (; 1 0  x.  ( A  x.  (; 1 0 ^ M
) ) )  +  (; 1 0  x.  B
) )  +  D
)  =  ( (; 1
0  x.  C )  +  D )
2213, 21eqtr3i 2219 . 2  |-  ( (; 1
0  x.  ( A  x.  (; 1 0 ^ M
) ) )  +  ( (; 1 0  x.  B
)  +  D ) )  =  ( (; 1
0  x.  C )  +  D )
23 decsplit.5 . . . . . 6  |-  ( M  +  1 )  =  N
244nn0cni 9258 . . . . . . 7  |-  (; 1 0 ^ M
)  e.  CC
2524, 14mulcomi 8030 . . . . . 6  |-  ( (; 1
0 ^ M )  x. ; 1 0 )  =  (; 1 0  x.  (; 1 0 ^ M ) )
261, 3, 23, 25numexpp1 12569 . . . . 5  |-  (; 1 0 ^ N
)  =  (; 1 0  x.  (; 1 0 ^ M ) )
2726oveq2i 5933 . . . 4  |-  ( A  x.  (; 1 0 ^ N
) )  =  ( A  x.  (; 1 0  x.  (; 1 0 ^ M ) ) )
282nn0cni 9258 . . . . 5  |-  A  e.  CC
2928, 14, 24mul12i 8170 . . . 4  |-  ( A  x.  (; 1 0  x.  (; 1 0 ^ M ) ) )  =  (; 1 0  x.  ( A  x.  (; 1 0 ^ M
) ) )
3027, 29eqtri 2217 . . 3  |-  ( A  x.  (; 1 0 ^ N
) )  =  (; 1
0  x.  ( A  x.  (; 1 0 ^ M
) ) )
31 dfdec10 9457 . . 3  |- ; B D  =  ( (; 1 0  x.  B
)  +  D )
3230, 31oveq12i 5934 . 2  |-  ( ( A  x.  (; 1 0 ^ N
) )  + ; B D )  =  ( (; 1 0  x.  ( A  x.  (; 1 0 ^ M
) ) )  +  ( (; 1 0  x.  B
)  +  D ) )
33 dfdec10 9457 . 2  |- ; C D  =  ( (; 1 0  x.  C
)  +  D )
3422, 32, 333eqtr4i 2227 1  |-  ( ( A  x.  (; 1 0 ^ N
) )  + ; B D )  = ; C D
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167  (class class class)co 5922   0cc0 7877   1c1 7878    + caddc 7880    x. cmul 7882   NN0cn0 9246  ;cdc 9454   ^cexp 10615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697  df-inn 8988  df-2 9046  df-3 9047  df-4 9048  df-5 9049  df-6 9050  df-7 9051  df-8 9052  df-9 9053  df-n0 9247  df-z 9324  df-dec 9455  df-uz 9599  df-seqfrec 10525  df-exp 10616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator