| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decsplit | GIF version | ||
| Description: Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
| Ref | Expression |
|---|---|
| decsplit0.1 | ⊢ 𝐴 ∈ ℕ0 |
| decsplit.2 | ⊢ 𝐵 ∈ ℕ0 |
| decsplit.3 | ⊢ 𝐷 ∈ ℕ0 |
| decsplit.4 | ⊢ 𝑀 ∈ ℕ0 |
| decsplit.5 | ⊢ (𝑀 + 1) = 𝑁 |
| decsplit.6 | ⊢ ((𝐴 · (;10↑𝑀)) + 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| decsplit | ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ;𝐶𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn0 9603 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
| 2 | decsplit0.1 | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | decsplit.4 | . . . . . . . 8 ⊢ 𝑀 ∈ ℕ0 | |
| 4 | 1, 3 | nn0expcli 10795 | . . . . . . 7 ⊢ (;10↑𝑀) ∈ ℕ0 |
| 5 | 2, 4 | nn0mulcli 9415 | . . . . . 6 ⊢ (𝐴 · (;10↑𝑀)) ∈ ℕ0 |
| 6 | 1, 5 | nn0mulcli 9415 | . . . . 5 ⊢ (;10 · (𝐴 · (;10↑𝑀))) ∈ ℕ0 |
| 7 | 6 | nn0cni 9389 | . . . 4 ⊢ (;10 · (𝐴 · (;10↑𝑀))) ∈ ℂ |
| 8 | decsplit.2 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
| 9 | 1, 8 | nn0mulcli 9415 | . . . . 5 ⊢ (;10 · 𝐵) ∈ ℕ0 |
| 10 | 9 | nn0cni 9389 | . . . 4 ⊢ (;10 · 𝐵) ∈ ℂ |
| 11 | decsplit.3 | . . . . 5 ⊢ 𝐷 ∈ ℕ0 | |
| 12 | 11 | nn0cni 9389 | . . . 4 ⊢ 𝐷 ∈ ℂ |
| 13 | 7, 10, 12 | addassi 8162 | . . 3 ⊢ (((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) + 𝐷) = ((;10 · (𝐴 · (;10↑𝑀))) + ((;10 · 𝐵) + 𝐷)) |
| 14 | 1 | nn0cni 9389 | . . . . . 6 ⊢ ;10 ∈ ℂ |
| 15 | 5 | nn0cni 9389 | . . . . . 6 ⊢ (𝐴 · (;10↑𝑀)) ∈ ℂ |
| 16 | 8 | nn0cni 9389 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
| 17 | 14, 15, 16 | adddii 8164 | . . . . 5 ⊢ (;10 · ((𝐴 · (;10↑𝑀)) + 𝐵)) = ((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) |
| 18 | decsplit.6 | . . . . . 6 ⊢ ((𝐴 · (;10↑𝑀)) + 𝐵) = 𝐶 | |
| 19 | 18 | oveq2i 6018 | . . . . 5 ⊢ (;10 · ((𝐴 · (;10↑𝑀)) + 𝐵)) = (;10 · 𝐶) |
| 20 | 17, 19 | eqtr3i 2252 | . . . 4 ⊢ ((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) = (;10 · 𝐶) |
| 21 | 20 | oveq1i 6017 | . . 3 ⊢ (((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) + 𝐷) = ((;10 · 𝐶) + 𝐷) |
| 22 | 13, 21 | eqtr3i 2252 | . 2 ⊢ ((;10 · (𝐴 · (;10↑𝑀))) + ((;10 · 𝐵) + 𝐷)) = ((;10 · 𝐶) + 𝐷) |
| 23 | decsplit.5 | . . . . . 6 ⊢ (𝑀 + 1) = 𝑁 | |
| 24 | 4 | nn0cni 9389 | . . . . . . 7 ⊢ (;10↑𝑀) ∈ ℂ |
| 25 | 24, 14 | mulcomi 8160 | . . . . . 6 ⊢ ((;10↑𝑀) · ;10) = (;10 · (;10↑𝑀)) |
| 26 | 1, 3, 23, 25 | numexpp1 12955 | . . . . 5 ⊢ (;10↑𝑁) = (;10 · (;10↑𝑀)) |
| 27 | 26 | oveq2i 6018 | . . . 4 ⊢ (𝐴 · (;10↑𝑁)) = (𝐴 · (;10 · (;10↑𝑀))) |
| 28 | 2 | nn0cni 9389 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 29 | 28, 14, 24 | mul12i 8300 | . . . 4 ⊢ (𝐴 · (;10 · (;10↑𝑀))) = (;10 · (𝐴 · (;10↑𝑀))) |
| 30 | 27, 29 | eqtri 2250 | . . 3 ⊢ (𝐴 · (;10↑𝑁)) = (;10 · (𝐴 · (;10↑𝑀))) |
| 31 | dfdec10 9589 | . . 3 ⊢ ;𝐵𝐷 = ((;10 · 𝐵) + 𝐷) | |
| 32 | 30, 31 | oveq12i 6019 | . 2 ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ((;10 · (𝐴 · (;10↑𝑀))) + ((;10 · 𝐵) + 𝐷)) |
| 33 | dfdec10 9589 | . 2 ⊢ ;𝐶𝐷 = ((;10 · 𝐶) + 𝐷) | |
| 34 | 22, 32, 33 | 3eqtr4i 2260 | 1 ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ;𝐶𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 6007 0cc0 8007 1c1 8008 + caddc 8010 · cmul 8012 ℕ0cn0 9377 ;cdc 9586 ↑cexp 10768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-seqfrec 10678 df-exp 10769 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |