| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elplyr | Unicode version | ||
| Description: Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| elplyr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1021 |
. 2
| |
| 2 | simp2 1022 |
. . 3
| |
| 3 | simp3 1023 |
. . . . 5
| |
| 4 | ssun1 3367 |
. . . . 5
| |
| 5 | fss 5485 |
. . . . 5
| |
| 6 | 3, 4, 5 | sylancl 413 |
. . . 4
|
| 7 | 0cnd 8147 |
. . . . . . . 8
| |
| 8 | 7 | snssd 3813 |
. . . . . . 7
|
| 9 | 1, 8 | unssd 3380 |
. . . . . 6
|
| 10 | cnex 8131 |
. . . . . 6
| |
| 11 | ssexg 4223 |
. . . . . 6
| |
| 12 | 9, 10, 11 | sylancl 413 |
. . . . 5
|
| 13 | nn0ex 9383 |
. . . . 5
| |
| 14 | elmapg 6816 |
. . . . 5
| |
| 15 | 12, 13, 14 | sylancl 413 |
. . . 4
|
| 16 | 6, 15 | mpbird 167 |
. . 3
|
| 17 | eqidd 2230 |
. . 3
| |
| 18 | oveq2 6015 |
. . . . . . 7
| |
| 19 | 18 | sumeq1d 11885 |
. . . . . 6
|
| 20 | 19 | mpteq2dv 4175 |
. . . . 5
|
| 21 | 20 | eqeq2d 2241 |
. . . 4
|
| 22 | fveq1 5628 |
. . . . . . . 8
| |
| 23 | 22 | oveq1d 6022 |
. . . . . . 7
|
| 24 | 23 | sumeq2sdv 11889 |
. . . . . 6
|
| 25 | 24 | mpteq2dv 4175 |
. . . . 5
|
| 26 | 25 | eqeq2d 2241 |
. . . 4
|
| 27 | 21, 26 | rspc2ev 2922 |
. . 3
|
| 28 | 2, 16, 17, 27 | syl3anc 1271 |
. 2
|
| 29 | elply 15416 |
. 2
| |
| 30 | 1, 28, 29 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-map 6805 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-n0 9378 df-z 9455 df-uz 9731 df-fz 10213 df-seqfrec 10678 df-sumdc 11873 df-ply 15412 |
| This theorem is referenced by: elplyd 15423 |
| Copyright terms: Public domain | W3C validator |