ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leexp2a Unicode version

Theorem leexp2a 10663
Description: Weak ordering relationship for exponentiation. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
leexp2a  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ M )  <_  ( A ^ N ) )

Proof of Theorem leexp2a
StepHypRef Expression
1 simp1 999 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  A  e.  RR )
2 0red 8020 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  0  e.  RR )
3 1red 8034 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  1  e.  RR )
4 0lt1 8146 . . . . . . . . 9  |-  0  <  1
54a1i 9 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  0  <  1 )
6 simp2 1000 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  1  <_  A )
72, 3, 1, 5, 6ltletrd 8442 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  0  <  A )
81, 7elrpd 9759 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  A  e.  RR+ )
9 eluzel2 9597 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
1093ad2ant3 1022 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  M  e.  ZZ )
11 rpexpcl 10629 . . . . . 6  |-  ( ( A  e.  RR+  /\  M  e.  ZZ )  ->  ( A ^ M )  e.  RR+ )
128, 10, 11syl2anc 411 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ M )  e.  RR+ )
1312rpred 9762 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ M )  e.  RR )
1413recnd 8048 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ M )  e.  CC )
1514mulid2d 8038 . 2  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( 1  x.  ( A ^ M ) )  =  ( A ^ M
) )
16 uznn0sub 9624 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  -  M )  e.  NN0 )
17163ad2ant3 1022 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( N  -  M )  e.  NN0 )
18 expge1 10647 . . . . 5  |-  ( ( A  e.  RR  /\  ( N  -  M
)  e.  NN0  /\  1  <_  A )  -> 
1  <_  ( A ^ ( N  -  M ) ) )
191, 17, 6, 18syl3anc 1249 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  1  <_  ( A ^ ( N  -  M ) ) )
201recnd 8048 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
211, 7gt0ap0d 8648 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  A #  0
)
22 eluzelz 9601 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
23223ad2ant3 1022 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
24 expsubap 10658 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  ZZ  /\  M  e.  ZZ ) )  ->  ( A ^ ( N  -  M ) )  =  ( ( A ^ N )  /  ( A ^ M ) ) )
2520, 21, 23, 10, 24syl22anc 1250 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( N  -  M ) )  =  ( ( A ^ N )  /  ( A ^ M ) ) )
2619, 25breqtrd 4055 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  1  <_  ( ( A ^ N
)  /  ( A ^ M ) ) )
27 rpexpcl 10629 . . . . . 6  |-  ( ( A  e.  RR+  /\  N  e.  ZZ )  ->  ( A ^ N )  e.  RR+ )
288, 23, 27syl2anc 411 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ N )  e.  RR+ )
2928rpred 9762 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ N )  e.  RR )
303, 29, 12lemuldivd 9812 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (
1  x.  ( A ^ M ) )  <_  ( A ^ N )  <->  1  <_  ( ( A ^ N
)  /  ( A ^ M ) ) ) )
3126, 30mpbird 167 . 2  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( 1  x.  ( A ^ M ) )  <_ 
( A ^ N
) )
3215, 31eqbrtrrd 4053 1  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ M )  <_  ( A ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870   RRcr 7871   0cc0 7872   1c1 7873    x. cmul 7877    < clt 8054    <_ cle 8055    - cmin 8190   # cap 8600    / cdiv 8691   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   RR+crp 9719   ^cexp 10609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610
This theorem is referenced by:  expnlbnd2  10736  leexp2ad  10773  ef01bndlem  11899
  Copyright terms: Public domain W3C validator