ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leexp2a Unicode version

Theorem leexp2a 10737
Description: Weak ordering relationship for exponentiation. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
leexp2a  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ M )  <_  ( A ^ N ) )

Proof of Theorem leexp2a
StepHypRef Expression
1 simp1 1000 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  A  e.  RR )
2 0red 8073 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  0  e.  RR )
3 1red 8087 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  1  e.  RR )
4 0lt1 8199 . . . . . . . . 9  |-  0  <  1
54a1i 9 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  0  <  1 )
6 simp2 1001 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  1  <_  A )
72, 3, 1, 5, 6ltletrd 8496 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  0  <  A )
81, 7elrpd 9815 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  A  e.  RR+ )
9 eluzel2 9653 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
1093ad2ant3 1023 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  M  e.  ZZ )
11 rpexpcl 10703 . . . . . 6  |-  ( ( A  e.  RR+  /\  M  e.  ZZ )  ->  ( A ^ M )  e.  RR+ )
128, 10, 11syl2anc 411 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ M )  e.  RR+ )
1312rpred 9818 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ M )  e.  RR )
1413recnd 8101 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ M )  e.  CC )
1514mulid2d 8091 . 2  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( 1  x.  ( A ^ M ) )  =  ( A ^ M
) )
16 uznn0sub 9680 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  -  M )  e.  NN0 )
17163ad2ant3 1023 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( N  -  M )  e.  NN0 )
18 expge1 10721 . . . . 5  |-  ( ( A  e.  RR  /\  ( N  -  M
)  e.  NN0  /\  1  <_  A )  -> 
1  <_  ( A ^ ( N  -  M ) ) )
191, 17, 6, 18syl3anc 1250 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  1  <_  ( A ^ ( N  -  M ) ) )
201recnd 8101 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
211, 7gt0ap0d 8702 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  A #  0
)
22 eluzelz 9657 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
23223ad2ant3 1023 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
24 expsubap 10732 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  ZZ  /\  M  e.  ZZ ) )  ->  ( A ^ ( N  -  M ) )  =  ( ( A ^ N )  /  ( A ^ M ) ) )
2520, 21, 23, 10, 24syl22anc 1251 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( N  -  M ) )  =  ( ( A ^ N )  /  ( A ^ M ) ) )
2619, 25breqtrd 4070 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  1  <_  ( ( A ^ N
)  /  ( A ^ M ) ) )
27 rpexpcl 10703 . . . . . 6  |-  ( ( A  e.  RR+  /\  N  e.  ZZ )  ->  ( A ^ N )  e.  RR+ )
288, 23, 27syl2anc 411 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ N )  e.  RR+ )
2928rpred 9818 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ N )  e.  RR )
303, 29, 12lemuldivd 9868 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (
1  x.  ( A ^ M ) )  <_  ( A ^ N )  <->  1  <_  ( ( A ^ N
)  /  ( A ^ M ) ) ) )
3126, 30mpbird 167 . 2  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( 1  x.  ( A ^ M ) )  <_ 
( A ^ N
) )
3215, 31eqbrtrrd 4068 1  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M )
)  ->  ( A ^ M )  <_  ( A ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2176   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   CCcc 7923   RRcr 7924   0cc0 7925   1c1 7926    x. cmul 7930    < clt 8107    <_ cle 8108    - cmin 8243   # cap 8654    / cdiv 8745   NN0cn0 9295   ZZcz 9372   ZZ>=cuz 9648   RR+crp 9775   ^cexp 10683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-seqfrec 10593  df-exp 10684
This theorem is referenced by:  expnlbnd2  10810  leexp2ad  10847  ef01bndlem  12067
  Copyright terms: Public domain W3C validator