ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  georeclim Unicode version

Theorem georeclim 11314
Description: The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
georeclim.1  |-  ( ph  ->  A  e.  CC )
georeclim.2  |-  ( ph  ->  1  <  ( abs `  A ) )
georeclim.3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( ( 1  /  A
) ^ k ) )
Assertion
Ref Expression
georeclim  |-  ( ph  ->  seq 0 (  +  ,  F )  ~~>  ( A  /  ( A  - 
1 ) ) )
Distinct variable groups:    A, k    k, F    ph, k

Proof of Theorem georeclim
StepHypRef Expression
1 georeclim.1 . . . 4  |-  ( ph  ->  A  e.  CC )
21abscld 10985 . . . . . 6  |-  ( ph  ->  ( abs `  A
)  e.  RR )
3 0red 7791 . . . . . . 7  |-  ( ph  ->  0  e.  RR )
4 1red 7805 . . . . . . 7  |-  ( ph  ->  1  e.  RR )
5 0lt1 7913 . . . . . . . 8  |-  0  <  1
65a1i 9 . . . . . . 7  |-  ( ph  ->  0  <  1 )
7 georeclim.2 . . . . . . 7  |-  ( ph  ->  1  <  ( abs `  A ) )
83, 4, 2, 6, 7lttrd 7912 . . . . . 6  |-  ( ph  ->  0  <  ( abs `  A ) )
92, 8gt0ap0d 8415 . . . . 5  |-  ( ph  ->  ( abs `  A
) #  0 )
10 abs00ap 10866 . . . . . 6  |-  ( A  e.  CC  ->  (
( abs `  A
) #  0  <->  A #  0
) )
111, 10syl 14 . . . . 5  |-  ( ph  ->  ( ( abs `  A
) #  0  <->  A #  0
) )
129, 11mpbid 146 . . . 4  |-  ( ph  ->  A #  0 )
131, 12recclapd 8565 . . 3  |-  ( ph  ->  ( 1  /  A
)  e.  CC )
14 1cnd 7806 . . . . . 6  |-  ( ph  ->  1  e.  CC )
1514, 1, 12absdivapd 10999 . . . . 5  |-  ( ph  ->  ( abs `  (
1  /  A ) )  =  ( ( abs `  1 )  /  ( abs `  A
) ) )
16 abs1 10876 . . . . . 6  |-  ( abs `  1 )  =  1
1716oveq1i 5792 . . . . 5  |-  ( ( abs `  1 )  /  ( abs `  A
) )  =  ( 1  /  ( abs `  A ) )
1815, 17eqtrdi 2189 . . . 4  |-  ( ph  ->  ( abs `  (
1  /  A ) )  =  ( 1  /  ( abs `  A
) ) )
192, 8elrpd 9510 . . . . . 6  |-  ( ph  ->  ( abs `  A
)  e.  RR+ )
2019recgt1d 9528 . . . . 5  |-  ( ph  ->  ( 1  <  ( abs `  A )  <->  ( 1  /  ( abs `  A
) )  <  1
) )
217, 20mpbid 146 . . . 4  |-  ( ph  ->  ( 1  /  ( abs `  A ) )  <  1 )
2218, 21eqbrtrd 3958 . . 3  |-  ( ph  ->  ( abs `  (
1  /  A ) )  <  1 )
23 georeclim.3 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( ( 1  /  A
) ^ k ) )
2413, 22, 23geolim 11312 . 2  |-  ( ph  ->  seq 0 (  +  ,  F )  ~~>  ( 1  /  ( 1  -  ( 1  /  A
) ) ) )
251, 14, 1, 12divsubdirapd 8614 . . . . 5  |-  ( ph  ->  ( ( A  - 
1 )  /  A
)  =  ( ( A  /  A )  -  ( 1  /  A ) ) )
261, 12dividapd 8570 . . . . . 6  |-  ( ph  ->  ( A  /  A
)  =  1 )
2726oveq1d 5797 . . . . 5  |-  ( ph  ->  ( ( A  /  A )  -  (
1  /  A ) )  =  ( 1  -  ( 1  /  A ) ) )
2825, 27eqtrd 2173 . . . 4  |-  ( ph  ->  ( ( A  - 
1 )  /  A
)  =  ( 1  -  ( 1  /  A ) ) )
2928oveq2d 5798 . . 3  |-  ( ph  ->  ( 1  /  (
( A  -  1 )  /  A ) )  =  ( 1  /  ( 1  -  ( 1  /  A
) ) ) )
30 ax-1cn 7737 . . . . 5  |-  1  e.  CC
31 subcl 7985 . . . . 5  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  -  1 )  e.  CC )
321, 30, 31sylancl 410 . . . 4  |-  ( ph  ->  ( A  -  1 )  e.  CC )
334, 6elrpd 9510 . . . . . 6  |-  ( ph  ->  1  e.  RR+ )
341, 33, 7absgtap 11311 . . . . 5  |-  ( ph  ->  A #  1 )
351, 14, 34subap0d 8430 . . . 4  |-  ( ph  ->  ( A  -  1 ) #  0 )
3632, 1, 35, 12recdivapd 8591 . . 3  |-  ( ph  ->  ( 1  /  (
( A  -  1 )  /  A ) )  =  ( A  /  ( A  - 
1 ) ) )
3729, 36eqtr3d 2175 . 2  |-  ( ph  ->  ( 1  /  (
1  -  ( 1  /  A ) ) )  =  ( A  /  ( A  - 
1 ) ) )
3824, 37breqtrd 3962 1  |-  ( ph  ->  seq 0 (  +  ,  F )  ~~>  ( A  /  ( A  - 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   CCcc 7642   0cc0 7644   1c1 7645    + caddc 7647    < clt 7824    - cmin 7957   # cap 8367    / cdiv 8456   NN0cn0 9001    seqcseq 10249   ^cexp 10323   abscabs 10801    ~~> cli 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  geoisumr  11319  ege2le3  11414  eftlub  11433
  Copyright terms: Public domain W3C validator