ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expsubap Unicode version

Theorem expsubap 10809
Description: Exponent subtraction law for integer exponentiation. (Contributed by Jim Kingdon, 11-Jun-2020.)
Assertion
Ref Expression
expsubap  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( A ^ ( M  -  N ) )  =  ( ( A ^ M )  /  ( A ^ N ) ) )

Proof of Theorem expsubap
StepHypRef Expression
1 znegcl 9477 . . 3  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
2 expaddzap 10805 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  -u N  e.  ZZ ) )  ->  ( A ^ ( M  +  -u N ) )  =  ( ( A ^ M )  x.  ( A ^ -u N ) ) )
31, 2sylanr2 405 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( A ^ ( M  +  -u N ) )  =  ( ( A ^ M )  x.  ( A ^ -u N ) ) )
4 zcn 9451 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  CC )
5 zcn 9451 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  CC )
6 negsub 8394 . . . . 5  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( M  +  -u N )  =  ( M  -  N ) )
74, 5, 6syl2an 289 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  -u N )  =  ( M  -  N ) )
87adantl 277 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( M  +  -u N )  =  ( M  -  N
) )
98oveq2d 6017 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( A ^ ( M  +  -u N ) )  =  ( A ^ ( M  -  N )
) )
10 expnegzap 10795 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( A ^ -u N )  =  ( 1  / 
( A ^ N
) ) )
11103expa 1227 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  e.  ZZ )  ->  ( A ^ -u N
)  =  ( 1  /  ( A ^ N ) ) )
1211adantrl 478 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( A ^ -u N )  =  ( 1  /  ( A ^ N ) ) )
1312oveq2d 6017 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( A ^ M )  x.  ( A ^ -u N
) )  =  ( ( A ^ M
)  x.  ( 1  /  ( A ^ N ) ) ) )
14 expclzap 10786 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  M  e.  ZZ )  ->  ( A ^ M )  e.  CC )
15143expa 1227 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  ZZ )  ->  ( A ^ M
)  e.  CC )
1615adantrr 479 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( A ^ M )  e.  CC )
17 expclzap 10786 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( A ^ N )  e.  CC )
18173expa 1227 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  e.  ZZ )  ->  ( A ^ N
)  e.  CC )
1918adantrl 478 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( A ^ N )  e.  CC )
20 expap0i 10793 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( A ^ N ) #  0 )
21203expa 1227 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  e.  ZZ )  ->  ( A ^ N
) #  0 )
2221adantrl 478 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( A ^ N ) #  0 )
2316, 19, 22divrecapd 8940 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( A ^ M )  / 
( A ^ N
) )  =  ( ( A ^ M
)  x.  ( 1  /  ( A ^ N ) ) ) )
2413, 23eqtr4d 2265 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( A ^ M )  x.  ( A ^ -u N
) )  =  ( ( A ^ M
)  /  ( A ^ N ) ) )
253, 9, 243eqtr3d 2270 1  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( A ^ ( M  -  N ) )  =  ( ( A ^ M )  /  ( A ^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   CCcc 7997   0cc0 7999   1c1 8000    + caddc 8002    x. cmul 8004    - cmin 8317   -ucneg 8318   # cap 8728    / cdiv 8819   ZZcz 9446   ^cexp 10760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-seqfrec 10670  df-exp 10761
This theorem is referenced by:  expm1ap  10811  ltexp2a  10813  leexp2a  10814  iexpcyc  10866  expsubapd  10906
  Copyright terms: Public domain W3C validator