ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fldiv4lem1div2 Unicode version

Theorem fldiv4lem1div2 10514
Description: The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021.)
Assertion
Ref Expression
fldiv4lem1div2  |-  ( N  e.  NN  ->  ( |_ `  ( N  / 
4 ) )  <_ 
( ( N  - 
1 )  /  2
) )

Proof of Theorem fldiv4lem1div2
StepHypRef Expression
1 elnn1uz2 9790 . 2  |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 )
) )
2 1lt4 9273 . . . . . 6  |-  1  <  4
3 1nn0 9373 . . . . . . 7  |-  1  e.  NN0
4 4nn 9262 . . . . . . 7  |-  4  e.  NN
5 divfl0 10503 . . . . . . 7  |-  ( ( 1  e.  NN0  /\  4  e.  NN )  ->  ( 1  <  4  <->  ( |_ `  ( 1  /  4 ) )  =  0 ) )
63, 4, 5mp2an 426 . . . . . 6  |-  ( 1  <  4  <->  ( |_ `  ( 1  /  4
) )  =  0 )
72, 6mpbi 145 . . . . 5  |-  ( |_
`  ( 1  / 
4 ) )  =  0
8 1z 9460 . . . . . . . . 9  |-  1  e.  ZZ
9 znq 9807 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  4  e.  NN )  ->  ( 1  /  4
)  e.  QQ )
108, 4, 9mp2an 426 . . . . . . . 8  |-  ( 1  /  4 )  e.  QQ
11 flqcl 10480 . . . . . . . 8  |-  ( ( 1  /  4 )  e.  QQ  ->  ( |_ `  ( 1  / 
4 ) )  e.  ZZ )
1210, 11ax-mp 5 . . . . . . 7  |-  ( |_
`  ( 1  / 
4 ) )  e.  ZZ
1312zrei 9440 . . . . . 6  |-  ( |_
`  ( 1  / 
4 ) )  e.  RR
1413eqlei 8228 . . . . 5  |-  ( ( |_ `  ( 1  /  4 ) )  =  0  ->  ( |_ `  ( 1  / 
4 ) )  <_ 
0 )
157, 14mp1i 10 . . . 4  |-  ( N  =  1  ->  ( |_ `  ( 1  / 
4 ) )  <_ 
0 )
16 fvoveq1 6017 . . . 4  |-  ( N  =  1  ->  ( |_ `  ( N  / 
4 ) )  =  ( |_ `  (
1  /  4 ) ) )
17 oveq1 6001 . . . . . . 7  |-  ( N  =  1  ->  ( N  -  1 )  =  ( 1  -  1 ) )
18 1m1e0 9167 . . . . . . 7  |-  ( 1  -  1 )  =  0
1917, 18eqtrdi 2278 . . . . . 6  |-  ( N  =  1  ->  ( N  -  1 )  =  0 )
2019oveq1d 6009 . . . . 5  |-  ( N  =  1  ->  (
( N  -  1 )  /  2 )  =  ( 0  / 
2 ) )
21 2cn 9169 . . . . . 6  |-  2  e.  CC
22 2ap0 9191 . . . . . 6  |-  2 #  0
2321, 22div0api 8881 . . . . 5  |-  ( 0  /  2 )  =  0
2420, 23eqtrdi 2278 . . . 4  |-  ( N  =  1  ->  (
( N  -  1 )  /  2 )  =  0 )
2515, 16, 243brtr4d 4114 . . 3  |-  ( N  =  1  ->  ( |_ `  ( N  / 
4 ) )  <_ 
( ( N  - 
1 )  /  2
) )
26 fldiv4lem1div2uz2 10513 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( |_ `  ( N  /  4
) )  <_  (
( N  -  1 )  /  2 ) )
2725, 26jaoi 721 . 2  |-  ( ( N  =  1  \/  N  e.  ( ZZ>= ` 
2 ) )  -> 
( |_ `  ( N  /  4 ) )  <_  ( ( N  -  1 )  / 
2 ) )
281, 27sylbi 121 1  |-  ( N  e.  NN  ->  ( |_ `  ( N  / 
4 ) )  <_ 
( ( N  - 
1 )  /  2
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   class class class wbr 4082   ` cfv 5314  (class class class)co 5994   0cc0 7987   1c1 7988    < clt 8169    <_ cle 8170    - cmin 8305    / cdiv 8807   NNcn 9098   2c2 9149   4c4 9151   NN0cn0 9357   ZZcz 9434   ZZ>=cuz 9710   QQcq 9802   |_cfl 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-po 4384  df-iso 4385  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fl 10477
This theorem is referenced by:  gausslemma2dlem0g  15719
  Copyright terms: Public domain W3C validator