ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fldiv4lem1div2 Unicode version

Theorem fldiv4lem1div2 10535
Description: The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021.)
Assertion
Ref Expression
fldiv4lem1div2  |-  ( N  e.  NN  ->  ( |_ `  ( N  / 
4 ) )  <_ 
( ( N  - 
1 )  /  2
) )

Proof of Theorem fldiv4lem1div2
StepHypRef Expression
1 elnn1uz2 9810 . 2  |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 )
) )
2 1lt4 9293 . . . . . 6  |-  1  <  4
3 1nn0 9393 . . . . . . 7  |-  1  e.  NN0
4 4nn 9282 . . . . . . 7  |-  4  e.  NN
5 divfl0 10524 . . . . . . 7  |-  ( ( 1  e.  NN0  /\  4  e.  NN )  ->  ( 1  <  4  <->  ( |_ `  ( 1  /  4 ) )  =  0 ) )
63, 4, 5mp2an 426 . . . . . 6  |-  ( 1  <  4  <->  ( |_ `  ( 1  /  4
) )  =  0 )
72, 6mpbi 145 . . . . 5  |-  ( |_
`  ( 1  / 
4 ) )  =  0
8 1z 9480 . . . . . . . . 9  |-  1  e.  ZZ
9 znq 9827 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  4  e.  NN )  ->  ( 1  /  4
)  e.  QQ )
108, 4, 9mp2an 426 . . . . . . . 8  |-  ( 1  /  4 )  e.  QQ
11 flqcl 10501 . . . . . . . 8  |-  ( ( 1  /  4 )  e.  QQ  ->  ( |_ `  ( 1  / 
4 ) )  e.  ZZ )
1210, 11ax-mp 5 . . . . . . 7  |-  ( |_
`  ( 1  / 
4 ) )  e.  ZZ
1312zrei 9460 . . . . . 6  |-  ( |_
`  ( 1  / 
4 ) )  e.  RR
1413eqlei 8248 . . . . 5  |-  ( ( |_ `  ( 1  /  4 ) )  =  0  ->  ( |_ `  ( 1  / 
4 ) )  <_ 
0 )
157, 14mp1i 10 . . . 4  |-  ( N  =  1  ->  ( |_ `  ( 1  / 
4 ) )  <_ 
0 )
16 fvoveq1 6030 . . . 4  |-  ( N  =  1  ->  ( |_ `  ( N  / 
4 ) )  =  ( |_ `  (
1  /  4 ) ) )
17 oveq1 6014 . . . . . . 7  |-  ( N  =  1  ->  ( N  -  1 )  =  ( 1  -  1 ) )
18 1m1e0 9187 . . . . . . 7  |-  ( 1  -  1 )  =  0
1917, 18eqtrdi 2278 . . . . . 6  |-  ( N  =  1  ->  ( N  -  1 )  =  0 )
2019oveq1d 6022 . . . . 5  |-  ( N  =  1  ->  (
( N  -  1 )  /  2 )  =  ( 0  / 
2 ) )
21 2cn 9189 . . . . . 6  |-  2  e.  CC
22 2ap0 9211 . . . . . 6  |-  2 #  0
2321, 22div0api 8901 . . . . 5  |-  ( 0  /  2 )  =  0
2420, 23eqtrdi 2278 . . . 4  |-  ( N  =  1  ->  (
( N  -  1 )  /  2 )  =  0 )
2515, 16, 243brtr4d 4115 . . 3  |-  ( N  =  1  ->  ( |_ `  ( N  / 
4 ) )  <_ 
( ( N  - 
1 )  /  2
) )
26 fldiv4lem1div2uz2 10534 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( |_ `  ( N  /  4
) )  <_  (
( N  -  1 )  /  2 ) )
2725, 26jaoi 721 . 2  |-  ( ( N  =  1  \/  N  e.  ( ZZ>= ` 
2 ) )  -> 
( |_ `  ( N  /  4 ) )  <_  ( ( N  -  1 )  / 
2 ) )
281, 27sylbi 121 1  |-  ( N  e.  NN  ->  ( |_ `  ( N  / 
4 ) )  <_ 
( ( N  - 
1 )  /  2
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   class class class wbr 4083   ` cfv 5318  (class class class)co 6007   0cc0 8007   1c1 8008    < clt 8189    <_ cle 8190    - cmin 8325    / cdiv 8827   NNcn 9118   2c2 9169   4c4 9171   NN0cn0 9377   ZZcz 9454   ZZ>=cuz 9730   QQcq 9822   |_cfl 10496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fl 10498
This theorem is referenced by:  gausslemma2dlem0g  15742
  Copyright terms: Public domain W3C validator