| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fldiv4lem1div2 | GIF version | ||
| Description: The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021.) | 
| Ref | Expression | 
|---|---|
| fldiv4lem1div2 | ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elnn1uz2 9681 | . 2 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) | |
| 2 | 1lt4 9165 | . . . . . 6 ⊢ 1 < 4 | |
| 3 | 1nn0 9265 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 4 | 4nn 9154 | . . . . . . 7 ⊢ 4 ∈ ℕ | |
| 5 | divfl0 10386 | . . . . . . 7 ⊢ ((1 ∈ ℕ0 ∧ 4 ∈ ℕ) → (1 < 4 ↔ (⌊‘(1 / 4)) = 0)) | |
| 6 | 3, 4, 5 | mp2an 426 | . . . . . 6 ⊢ (1 < 4 ↔ (⌊‘(1 / 4)) = 0) | 
| 7 | 2, 6 | mpbi 145 | . . . . 5 ⊢ (⌊‘(1 / 4)) = 0 | 
| 8 | 1z 9352 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
| 9 | znq 9698 | . . . . . . . . 9 ⊢ ((1 ∈ ℤ ∧ 4 ∈ ℕ) → (1 / 4) ∈ ℚ) | |
| 10 | 8, 4, 9 | mp2an 426 | . . . . . . . 8 ⊢ (1 / 4) ∈ ℚ | 
| 11 | flqcl 10363 | . . . . . . . 8 ⊢ ((1 / 4) ∈ ℚ → (⌊‘(1 / 4)) ∈ ℤ) | |
| 12 | 10, 11 | ax-mp 5 | . . . . . . 7 ⊢ (⌊‘(1 / 4)) ∈ ℤ | 
| 13 | 12 | zrei 9332 | . . . . . 6 ⊢ (⌊‘(1 / 4)) ∈ ℝ | 
| 14 | 13 | eqlei 8120 | . . . . 5 ⊢ ((⌊‘(1 / 4)) = 0 → (⌊‘(1 / 4)) ≤ 0) | 
| 15 | 7, 14 | mp1i 10 | . . . 4 ⊢ (𝑁 = 1 → (⌊‘(1 / 4)) ≤ 0) | 
| 16 | fvoveq1 5945 | . . . 4 ⊢ (𝑁 = 1 → (⌊‘(𝑁 / 4)) = (⌊‘(1 / 4))) | |
| 17 | oveq1 5929 | . . . . . . 7 ⊢ (𝑁 = 1 → (𝑁 − 1) = (1 − 1)) | |
| 18 | 1m1e0 9059 | . . . . . . 7 ⊢ (1 − 1) = 0 | |
| 19 | 17, 18 | eqtrdi 2245 | . . . . . 6 ⊢ (𝑁 = 1 → (𝑁 − 1) = 0) | 
| 20 | 19 | oveq1d 5937 | . . . . 5 ⊢ (𝑁 = 1 → ((𝑁 − 1) / 2) = (0 / 2)) | 
| 21 | 2cn 9061 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 22 | 2ap0 9083 | . . . . . 6 ⊢ 2 # 0 | |
| 23 | 21, 22 | div0api 8773 | . . . . 5 ⊢ (0 / 2) = 0 | 
| 24 | 20, 23 | eqtrdi 2245 | . . . 4 ⊢ (𝑁 = 1 → ((𝑁 − 1) / 2) = 0) | 
| 25 | 15, 16, 24 | 3brtr4d 4065 | . . 3 ⊢ (𝑁 = 1 → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) | 
| 26 | fldiv4lem1div2uz2 10396 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) | |
| 27 | 25, 26 | jaoi 717 | . 2 ⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2)) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) | 
| 28 | 1, 27 | sylbi 121 | 1 ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 0cc0 7879 1c1 7880 < clt 8061 ≤ cle 8062 − cmin 8197 / cdiv 8699 ℕcn 8990 2c2 9041 4c4 9043 ℕ0cn0 9249 ℤcz 9326 ℤ≥cuz 9601 ℚcq 9693 ⌊cfl 10358 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fl 10360 | 
| This theorem is referenced by: gausslemma2dlem0g 15296 | 
| Copyright terms: Public domain | W3C validator |