![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fldiv4lem1div2 | GIF version |
Description: The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021.) |
Ref | Expression |
---|---|
fldiv4lem1div2 | ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn1uz2 9675 | . 2 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) | |
2 | 1lt4 9159 | . . . . . 6 ⊢ 1 < 4 | |
3 | 1nn0 9259 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
4 | 4nn 9148 | . . . . . . 7 ⊢ 4 ∈ ℕ | |
5 | divfl0 10368 | . . . . . . 7 ⊢ ((1 ∈ ℕ0 ∧ 4 ∈ ℕ) → (1 < 4 ↔ (⌊‘(1 / 4)) = 0)) | |
6 | 3, 4, 5 | mp2an 426 | . . . . . 6 ⊢ (1 < 4 ↔ (⌊‘(1 / 4)) = 0) |
7 | 2, 6 | mpbi 145 | . . . . 5 ⊢ (⌊‘(1 / 4)) = 0 |
8 | 1z 9346 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
9 | znq 9692 | . . . . . . . . 9 ⊢ ((1 ∈ ℤ ∧ 4 ∈ ℕ) → (1 / 4) ∈ ℚ) | |
10 | 8, 4, 9 | mp2an 426 | . . . . . . . 8 ⊢ (1 / 4) ∈ ℚ |
11 | flqcl 10345 | . . . . . . . 8 ⊢ ((1 / 4) ∈ ℚ → (⌊‘(1 / 4)) ∈ ℤ) | |
12 | 10, 11 | ax-mp 5 | . . . . . . 7 ⊢ (⌊‘(1 / 4)) ∈ ℤ |
13 | 12 | zrei 9326 | . . . . . 6 ⊢ (⌊‘(1 / 4)) ∈ ℝ |
14 | 13 | eqlei 8115 | . . . . 5 ⊢ ((⌊‘(1 / 4)) = 0 → (⌊‘(1 / 4)) ≤ 0) |
15 | 7, 14 | mp1i 10 | . . . 4 ⊢ (𝑁 = 1 → (⌊‘(1 / 4)) ≤ 0) |
16 | fvoveq1 5942 | . . . 4 ⊢ (𝑁 = 1 → (⌊‘(𝑁 / 4)) = (⌊‘(1 / 4))) | |
17 | oveq1 5926 | . . . . . . 7 ⊢ (𝑁 = 1 → (𝑁 − 1) = (1 − 1)) | |
18 | 1m1e0 9053 | . . . . . . 7 ⊢ (1 − 1) = 0 | |
19 | 17, 18 | eqtrdi 2242 | . . . . . 6 ⊢ (𝑁 = 1 → (𝑁 − 1) = 0) |
20 | 19 | oveq1d 5934 | . . . . 5 ⊢ (𝑁 = 1 → ((𝑁 − 1) / 2) = (0 / 2)) |
21 | 2cn 9055 | . . . . . 6 ⊢ 2 ∈ ℂ | |
22 | 2ap0 9077 | . . . . . 6 ⊢ 2 # 0 | |
23 | 21, 22 | div0api 8767 | . . . . 5 ⊢ (0 / 2) = 0 |
24 | 20, 23 | eqtrdi 2242 | . . . 4 ⊢ (𝑁 = 1 → ((𝑁 − 1) / 2) = 0) |
25 | 15, 16, 24 | 3brtr4d 4062 | . . 3 ⊢ (𝑁 = 1 → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
26 | fldiv4lem1div2uz2 10378 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) | |
27 | 25, 26 | jaoi 717 | . 2 ⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2)) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
28 | 1, 27 | sylbi 121 | 1 ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 0cc0 7874 1c1 7875 < clt 8056 ≤ cle 8057 − cmin 8192 / cdiv 8693 ℕcn 8984 2c2 9035 4c4 9037 ℕ0cn0 9243 ℤcz 9320 ℤ≥cuz 9595 ℚcq 9687 ⌊cfl 10340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-fl 10342 |
This theorem is referenced by: gausslemma2dlem0g 15212 |
Copyright terms: Public domain | W3C validator |