| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fldiv4lem1div2 | GIF version | ||
| Description: The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021.) |
| Ref | Expression |
|---|---|
| fldiv4lem1div2 | ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn1uz2 9770 | . 2 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) | |
| 2 | 1lt4 9253 | . . . . . 6 ⊢ 1 < 4 | |
| 3 | 1nn0 9353 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 4 | 4nn 9242 | . . . . . . 7 ⊢ 4 ∈ ℕ | |
| 5 | divfl0 10483 | . . . . . . 7 ⊢ ((1 ∈ ℕ0 ∧ 4 ∈ ℕ) → (1 < 4 ↔ (⌊‘(1 / 4)) = 0)) | |
| 6 | 3, 4, 5 | mp2an 426 | . . . . . 6 ⊢ (1 < 4 ↔ (⌊‘(1 / 4)) = 0) |
| 7 | 2, 6 | mpbi 145 | . . . . 5 ⊢ (⌊‘(1 / 4)) = 0 |
| 8 | 1z 9440 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
| 9 | znq 9787 | . . . . . . . . 9 ⊢ ((1 ∈ ℤ ∧ 4 ∈ ℕ) → (1 / 4) ∈ ℚ) | |
| 10 | 8, 4, 9 | mp2an 426 | . . . . . . . 8 ⊢ (1 / 4) ∈ ℚ |
| 11 | flqcl 10460 | . . . . . . . 8 ⊢ ((1 / 4) ∈ ℚ → (⌊‘(1 / 4)) ∈ ℤ) | |
| 12 | 10, 11 | ax-mp 5 | . . . . . . 7 ⊢ (⌊‘(1 / 4)) ∈ ℤ |
| 13 | 12 | zrei 9420 | . . . . . 6 ⊢ (⌊‘(1 / 4)) ∈ ℝ |
| 14 | 13 | eqlei 8208 | . . . . 5 ⊢ ((⌊‘(1 / 4)) = 0 → (⌊‘(1 / 4)) ≤ 0) |
| 15 | 7, 14 | mp1i 10 | . . . 4 ⊢ (𝑁 = 1 → (⌊‘(1 / 4)) ≤ 0) |
| 16 | fvoveq1 5997 | . . . 4 ⊢ (𝑁 = 1 → (⌊‘(𝑁 / 4)) = (⌊‘(1 / 4))) | |
| 17 | oveq1 5981 | . . . . . . 7 ⊢ (𝑁 = 1 → (𝑁 − 1) = (1 − 1)) | |
| 18 | 1m1e0 9147 | . . . . . . 7 ⊢ (1 − 1) = 0 | |
| 19 | 17, 18 | eqtrdi 2258 | . . . . . 6 ⊢ (𝑁 = 1 → (𝑁 − 1) = 0) |
| 20 | 19 | oveq1d 5989 | . . . . 5 ⊢ (𝑁 = 1 → ((𝑁 − 1) / 2) = (0 / 2)) |
| 21 | 2cn 9149 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 22 | 2ap0 9171 | . . . . . 6 ⊢ 2 # 0 | |
| 23 | 21, 22 | div0api 8861 | . . . . 5 ⊢ (0 / 2) = 0 |
| 24 | 20, 23 | eqtrdi 2258 | . . . 4 ⊢ (𝑁 = 1 → ((𝑁 − 1) / 2) = 0) |
| 25 | 15, 16, 24 | 3brtr4d 4094 | . . 3 ⊢ (𝑁 = 1 → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| 26 | fldiv4lem1div2uz2 10493 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) | |
| 27 | 25, 26 | jaoi 720 | . 2 ⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2)) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| 28 | 1, 27 | sylbi 121 | 1 ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 712 = wceq 1375 ∈ wcel 2180 class class class wbr 4062 ‘cfv 5294 (class class class)co 5974 0cc0 7967 1c1 7968 < clt 8149 ≤ cle 8150 − cmin 8285 / cdiv 8787 ℕcn 9078 2c2 9129 4c4 9131 ℕ0cn0 9337 ℤcz 9414 ℤ≥cuz 9690 ℚcq 9782 ⌊cfl 10455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-po 4364 df-iso 4365 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-fl 10457 |
| This theorem is referenced by: gausslemma2dlem0g 15699 |
| Copyright terms: Public domain | W3C validator |