ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modsubi Unicode version

Theorem modsubi 12928
Description: Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
modsubi.1  |-  N  e.  NN
modsubi.2  |-  A  e.  NN
modsubi.3  |-  B  e. 
NN0
modsubi.4  |-  M  e. 
NN0
modsubi.6  |-  ( A  mod  N )  =  ( K  mod  N
)
modsubi.5  |-  ( M  +  B )  =  K
Assertion
Ref Expression
modsubi  |-  ( ( A  -  B )  mod  N )  =  ( M  mod  N
)

Proof of Theorem modsubi
StepHypRef Expression
1 modsubi.2 . . . . 5  |-  A  e.  NN
2 nnq 9816 . . . . 5  |-  ( A  e.  NN  ->  A  e.  QQ )
31, 2mp1i 10 . . . 4  |-  ( T. 
->  A  e.  QQ )
4 modsubi.5 . . . . . . 7  |-  ( M  +  B )  =  K
5 modsubi.4 . . . . . . . 8  |-  M  e. 
NN0
6 modsubi.3 . . . . . . . 8  |-  B  e. 
NN0
75, 6nn0addcli 9394 . . . . . . 7  |-  ( M  +  B )  e. 
NN0
84, 7eqeltrri 2303 . . . . . 6  |-  K  e. 
NN0
98nn0zi 9456 . . . . 5  |-  K  e.  ZZ
10 zq 9809 . . . . 5  |-  ( K  e.  ZZ  ->  K  e.  QQ )
119, 10mp1i 10 . . . 4  |-  ( T. 
->  K  e.  QQ )
126nn0negzi 9469 . . . . 5  |-  -u B  e.  ZZ
13 zq 9809 . . . . 5  |-  ( -u B  e.  ZZ  ->  -u B  e.  QQ )
1412, 13mp1i 10 . . . 4  |-  ( T. 
->  -u B  e.  QQ )
15 modsubi.1 . . . . 5  |-  N  e.  NN
16 nnq 9816 . . . . 5  |-  ( N  e.  NN  ->  N  e.  QQ )
1715, 16mp1i 10 . . . 4  |-  ( T. 
->  N  e.  QQ )
18 nngt0 9123 . . . . 5  |-  ( N  e.  NN  ->  0  <  N )
1915, 18mp1i 10 . . . 4  |-  ( T. 
->  0  <  N )
20 modsubi.6 . . . . 5  |-  ( A  mod  N )  =  ( K  mod  N
)
2120a1i 9 . . . 4  |-  ( T. 
->  ( A  mod  N
)  =  ( K  mod  N ) )
223, 11, 14, 17, 19, 21modqadd1 10570 . . 3  |-  ( T. 
->  ( ( A  +  -u B )  mod  N
)  =  ( ( K  +  -u B
)  mod  N )
)
2322mptru 1404 . 2  |-  ( ( A  +  -u B
)  mod  N )  =  ( ( K  +  -u B )  mod 
N )
241nncni 9108 . . . 4  |-  A  e.  CC
256nn0cni 9369 . . . 4  |-  B  e.  CC
2624, 25negsubi 8412 . . 3  |-  ( A  +  -u B )  =  ( A  -  B
)
2726oveq1i 6004 . 2  |-  ( ( A  +  -u B
)  mod  N )  =  ( ( A  -  B )  mod 
N )
287nn0rei 9368 . . . . . . 7  |-  ( M  +  B )  e.  RR
294, 28eqeltrri 2303 . . . . . 6  |-  K  e.  RR
3029recni 8146 . . . . 5  |-  K  e.  CC
3130, 25negsubi 8412 . . . 4  |-  ( K  +  -u B )  =  ( K  -  B
)
325nn0cni 9369 . . . . . 6  |-  M  e.  CC
3330, 25, 32subadd2i 8422 . . . . 5  |-  ( ( K  -  B )  =  M  <->  ( M  +  B )  =  K )
344, 33mpbir 146 . . . 4  |-  ( K  -  B )  =  M
3531, 34eqtri 2250 . . 3  |-  ( K  +  -u B )  =  M
3635oveq1i 6004 . 2  |-  ( ( K  +  -u B
)  mod  N )  =  ( M  mod  N )
3723, 27, 363eqtr3i 2258 1  |-  ( ( A  -  B )  mod  N )  =  ( M  mod  N
)
Colors of variables: wff set class
Syntax hints:    = wceq 1395   T. wtru 1396    e. wcel 2200   class class class wbr 4082  (class class class)co 5994   RRcr 7986   0cc0 7987    + caddc 7990    < clt 8169    - cmin 8305   -ucneg 8306   NNcn 9098   NN0cn0 9357   ZZcz 9434   QQcq 9802    mod cmo 10531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-po 4384  df-iso 4385  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-n0 9358  df-z 9435  df-q 9803  df-rp 9838  df-fl 10477  df-mod 10532
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator