ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modsubi Unicode version

Theorem modsubi 12613
Description: Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
modsubi.1  |-  N  e.  NN
modsubi.2  |-  A  e.  NN
modsubi.3  |-  B  e. 
NN0
modsubi.4  |-  M  e. 
NN0
modsubi.6  |-  ( A  mod  N )  =  ( K  mod  N
)
modsubi.5  |-  ( M  +  B )  =  K
Assertion
Ref Expression
modsubi  |-  ( ( A  -  B )  mod  N )  =  ( M  mod  N
)

Proof of Theorem modsubi
StepHypRef Expression
1 modsubi.2 . . . . 5  |-  A  e.  NN
2 nnq 9724 . . . . 5  |-  ( A  e.  NN  ->  A  e.  QQ )
31, 2mp1i 10 . . . 4  |-  ( T. 
->  A  e.  QQ )
4 modsubi.5 . . . . . . 7  |-  ( M  +  B )  =  K
5 modsubi.4 . . . . . . . 8  |-  M  e. 
NN0
6 modsubi.3 . . . . . . . 8  |-  B  e. 
NN0
75, 6nn0addcli 9303 . . . . . . 7  |-  ( M  +  B )  e. 
NN0
84, 7eqeltrri 2270 . . . . . 6  |-  K  e. 
NN0
98nn0zi 9365 . . . . 5  |-  K  e.  ZZ
10 zq 9717 . . . . 5  |-  ( K  e.  ZZ  ->  K  e.  QQ )
119, 10mp1i 10 . . . 4  |-  ( T. 
->  K  e.  QQ )
126nn0negzi 9378 . . . . 5  |-  -u B  e.  ZZ
13 zq 9717 . . . . 5  |-  ( -u B  e.  ZZ  ->  -u B  e.  QQ )
1412, 13mp1i 10 . . . 4  |-  ( T. 
->  -u B  e.  QQ )
15 modsubi.1 . . . . 5  |-  N  e.  NN
16 nnq 9724 . . . . 5  |-  ( N  e.  NN  ->  N  e.  QQ )
1715, 16mp1i 10 . . . 4  |-  ( T. 
->  N  e.  QQ )
18 nngt0 9032 . . . . 5  |-  ( N  e.  NN  ->  0  <  N )
1915, 18mp1i 10 . . . 4  |-  ( T. 
->  0  <  N )
20 modsubi.6 . . . . 5  |-  ( A  mod  N )  =  ( K  mod  N
)
2120a1i 9 . . . 4  |-  ( T. 
->  ( A  mod  N
)  =  ( K  mod  N ) )
223, 11, 14, 17, 19, 21modqadd1 10470 . . 3  |-  ( T. 
->  ( ( A  +  -u B )  mod  N
)  =  ( ( K  +  -u B
)  mod  N )
)
2322mptru 1373 . 2  |-  ( ( A  +  -u B
)  mod  N )  =  ( ( K  +  -u B )  mod 
N )
241nncni 9017 . . . 4  |-  A  e.  CC
256nn0cni 9278 . . . 4  |-  B  e.  CC
2624, 25negsubi 8321 . . 3  |-  ( A  +  -u B )  =  ( A  -  B
)
2726oveq1i 5935 . 2  |-  ( ( A  +  -u B
)  mod  N )  =  ( ( A  -  B )  mod 
N )
287nn0rei 9277 . . . . . . 7  |-  ( M  +  B )  e.  RR
294, 28eqeltrri 2270 . . . . . 6  |-  K  e.  RR
3029recni 8055 . . . . 5  |-  K  e.  CC
3130, 25negsubi 8321 . . . 4  |-  ( K  +  -u B )  =  ( K  -  B
)
325nn0cni 9278 . . . . . 6  |-  M  e.  CC
3330, 25, 32subadd2i 8331 . . . . 5  |-  ( ( K  -  B )  =  M  <->  ( M  +  B )  =  K )
344, 33mpbir 146 . . . 4  |-  ( K  -  B )  =  M
3531, 34eqtri 2217 . . 3  |-  ( K  +  -u B )  =  M
3635oveq1i 5935 . 2  |-  ( ( K  +  -u B
)  mod  N )  =  ( M  mod  N )
3723, 27, 363eqtr3i 2225 1  |-  ( ( A  -  B )  mod  N )  =  ( M  mod  N
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364   T. wtru 1365    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   RRcr 7895   0cc0 7896    + caddc 7899    < clt 8078    - cmin 8214   -ucneg 8215   NNcn 9007   NN0cn0 9266   ZZcz 9343   QQcq 9710    mod cmo 10431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-q 9711  df-rp 9746  df-fl 10377  df-mod 10432
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator