| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modsubi | GIF version | ||
| Description: Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| modsubi.1 | ⊢ 𝑁 ∈ ℕ |
| modsubi.2 | ⊢ 𝐴 ∈ ℕ |
| modsubi.3 | ⊢ 𝐵 ∈ ℕ0 |
| modsubi.4 | ⊢ 𝑀 ∈ ℕ0 |
| modsubi.6 | ⊢ (𝐴 mod 𝑁) = (𝐾 mod 𝑁) |
| modsubi.5 | ⊢ (𝑀 + 𝐵) = 𝐾 |
| Ref | Expression |
|---|---|
| modsubi | ⊢ ((𝐴 − 𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modsubi.2 | . . . . 5 ⊢ 𝐴 ∈ ℕ | |
| 2 | nnq 9761 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℚ) | |
| 3 | 1, 2 | mp1i 10 | . . . 4 ⊢ (⊤ → 𝐴 ∈ ℚ) |
| 4 | modsubi.5 | . . . . . . 7 ⊢ (𝑀 + 𝐵) = 𝐾 | |
| 5 | modsubi.4 | . . . . . . . 8 ⊢ 𝑀 ∈ ℕ0 | |
| 6 | modsubi.3 | . . . . . . . 8 ⊢ 𝐵 ∈ ℕ0 | |
| 7 | 5, 6 | nn0addcli 9339 | . . . . . . 7 ⊢ (𝑀 + 𝐵) ∈ ℕ0 |
| 8 | 4, 7 | eqeltrri 2280 | . . . . . 6 ⊢ 𝐾 ∈ ℕ0 |
| 9 | 8 | nn0zi 9401 | . . . . 5 ⊢ 𝐾 ∈ ℤ |
| 10 | zq 9754 | . . . . 5 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℚ) | |
| 11 | 9, 10 | mp1i 10 | . . . 4 ⊢ (⊤ → 𝐾 ∈ ℚ) |
| 12 | 6 | nn0negzi 9414 | . . . . 5 ⊢ -𝐵 ∈ ℤ |
| 13 | zq 9754 | . . . . 5 ⊢ (-𝐵 ∈ ℤ → -𝐵 ∈ ℚ) | |
| 14 | 12, 13 | mp1i 10 | . . . 4 ⊢ (⊤ → -𝐵 ∈ ℚ) |
| 15 | modsubi.1 | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
| 16 | nnq 9761 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℚ) | |
| 17 | 15, 16 | mp1i 10 | . . . 4 ⊢ (⊤ → 𝑁 ∈ ℚ) |
| 18 | nngt0 9068 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 19 | 15, 18 | mp1i 10 | . . . 4 ⊢ (⊤ → 0 < 𝑁) |
| 20 | modsubi.6 | . . . . 5 ⊢ (𝐴 mod 𝑁) = (𝐾 mod 𝑁) | |
| 21 | 20 | a1i 9 | . . . 4 ⊢ (⊤ → (𝐴 mod 𝑁) = (𝐾 mod 𝑁)) |
| 22 | 3, 11, 14, 17, 19, 21 | modqadd1 10513 | . . 3 ⊢ (⊤ → ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁)) |
| 23 | 22 | mptru 1382 | . 2 ⊢ ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁) |
| 24 | 1 | nncni 9053 | . . . 4 ⊢ 𝐴 ∈ ℂ |
| 25 | 6 | nn0cni 9314 | . . . 4 ⊢ 𝐵 ∈ ℂ |
| 26 | 24, 25 | negsubi 8357 | . . 3 ⊢ (𝐴 + -𝐵) = (𝐴 − 𝐵) |
| 27 | 26 | oveq1i 5961 | . 2 ⊢ ((𝐴 + -𝐵) mod 𝑁) = ((𝐴 − 𝐵) mod 𝑁) |
| 28 | 7 | nn0rei 9313 | . . . . . . 7 ⊢ (𝑀 + 𝐵) ∈ ℝ |
| 29 | 4, 28 | eqeltrri 2280 | . . . . . 6 ⊢ 𝐾 ∈ ℝ |
| 30 | 29 | recni 8091 | . . . . 5 ⊢ 𝐾 ∈ ℂ |
| 31 | 30, 25 | negsubi 8357 | . . . 4 ⊢ (𝐾 + -𝐵) = (𝐾 − 𝐵) |
| 32 | 5 | nn0cni 9314 | . . . . . 6 ⊢ 𝑀 ∈ ℂ |
| 33 | 30, 25, 32 | subadd2i 8367 | . . . . 5 ⊢ ((𝐾 − 𝐵) = 𝑀 ↔ (𝑀 + 𝐵) = 𝐾) |
| 34 | 4, 33 | mpbir 146 | . . . 4 ⊢ (𝐾 − 𝐵) = 𝑀 |
| 35 | 31, 34 | eqtri 2227 | . . 3 ⊢ (𝐾 + -𝐵) = 𝑀 |
| 36 | 35 | oveq1i 5961 | . 2 ⊢ ((𝐾 + -𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
| 37 | 23, 27, 36 | 3eqtr3i 2235 | 1 ⊢ ((𝐴 − 𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ⊤wtru 1374 ∈ wcel 2177 class class class wbr 4047 (class class class)co 5951 ℝcr 7931 0cc0 7932 + caddc 7935 < clt 8114 − cmin 8250 -cneg 8251 ℕcn 9043 ℕ0cn0 9302 ℤcz 9379 ℚcq 9747 mod cmo 10474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-po 4347 df-iso 4348 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-n0 9303 df-z 9380 df-q 9748 df-rp 9783 df-fl 10420 df-mod 10475 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |