| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modsubi | GIF version | ||
| Description: Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| modsubi.1 | ⊢ 𝑁 ∈ ℕ |
| modsubi.2 | ⊢ 𝐴 ∈ ℕ |
| modsubi.3 | ⊢ 𝐵 ∈ ℕ0 |
| modsubi.4 | ⊢ 𝑀 ∈ ℕ0 |
| modsubi.6 | ⊢ (𝐴 mod 𝑁) = (𝐾 mod 𝑁) |
| modsubi.5 | ⊢ (𝑀 + 𝐵) = 𝐾 |
| Ref | Expression |
|---|---|
| modsubi | ⊢ ((𝐴 − 𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modsubi.2 | . . . . 5 ⊢ 𝐴 ∈ ℕ | |
| 2 | nnq 9836 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℚ) | |
| 3 | 1, 2 | mp1i 10 | . . . 4 ⊢ (⊤ → 𝐴 ∈ ℚ) |
| 4 | modsubi.5 | . . . . . . 7 ⊢ (𝑀 + 𝐵) = 𝐾 | |
| 5 | modsubi.4 | . . . . . . . 8 ⊢ 𝑀 ∈ ℕ0 | |
| 6 | modsubi.3 | . . . . . . . 8 ⊢ 𝐵 ∈ ℕ0 | |
| 7 | 5, 6 | nn0addcli 9414 | . . . . . . 7 ⊢ (𝑀 + 𝐵) ∈ ℕ0 |
| 8 | 4, 7 | eqeltrri 2303 | . . . . . 6 ⊢ 𝐾 ∈ ℕ0 |
| 9 | 8 | nn0zi 9476 | . . . . 5 ⊢ 𝐾 ∈ ℤ |
| 10 | zq 9829 | . . . . 5 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℚ) | |
| 11 | 9, 10 | mp1i 10 | . . . 4 ⊢ (⊤ → 𝐾 ∈ ℚ) |
| 12 | 6 | nn0negzi 9489 | . . . . 5 ⊢ -𝐵 ∈ ℤ |
| 13 | zq 9829 | . . . . 5 ⊢ (-𝐵 ∈ ℤ → -𝐵 ∈ ℚ) | |
| 14 | 12, 13 | mp1i 10 | . . . 4 ⊢ (⊤ → -𝐵 ∈ ℚ) |
| 15 | modsubi.1 | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
| 16 | nnq 9836 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℚ) | |
| 17 | 15, 16 | mp1i 10 | . . . 4 ⊢ (⊤ → 𝑁 ∈ ℚ) |
| 18 | nngt0 9143 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 19 | 15, 18 | mp1i 10 | . . . 4 ⊢ (⊤ → 0 < 𝑁) |
| 20 | modsubi.6 | . . . . 5 ⊢ (𝐴 mod 𝑁) = (𝐾 mod 𝑁) | |
| 21 | 20 | a1i 9 | . . . 4 ⊢ (⊤ → (𝐴 mod 𝑁) = (𝐾 mod 𝑁)) |
| 22 | 3, 11, 14, 17, 19, 21 | modqadd1 10591 | . . 3 ⊢ (⊤ → ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁)) |
| 23 | 22 | mptru 1404 | . 2 ⊢ ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁) |
| 24 | 1 | nncni 9128 | . . . 4 ⊢ 𝐴 ∈ ℂ |
| 25 | 6 | nn0cni 9389 | . . . 4 ⊢ 𝐵 ∈ ℂ |
| 26 | 24, 25 | negsubi 8432 | . . 3 ⊢ (𝐴 + -𝐵) = (𝐴 − 𝐵) |
| 27 | 26 | oveq1i 6017 | . 2 ⊢ ((𝐴 + -𝐵) mod 𝑁) = ((𝐴 − 𝐵) mod 𝑁) |
| 28 | 7 | nn0rei 9388 | . . . . . . 7 ⊢ (𝑀 + 𝐵) ∈ ℝ |
| 29 | 4, 28 | eqeltrri 2303 | . . . . . 6 ⊢ 𝐾 ∈ ℝ |
| 30 | 29 | recni 8166 | . . . . 5 ⊢ 𝐾 ∈ ℂ |
| 31 | 30, 25 | negsubi 8432 | . . . 4 ⊢ (𝐾 + -𝐵) = (𝐾 − 𝐵) |
| 32 | 5 | nn0cni 9389 | . . . . . 6 ⊢ 𝑀 ∈ ℂ |
| 33 | 30, 25, 32 | subadd2i 8442 | . . . . 5 ⊢ ((𝐾 − 𝐵) = 𝑀 ↔ (𝑀 + 𝐵) = 𝐾) |
| 34 | 4, 33 | mpbir 146 | . . . 4 ⊢ (𝐾 − 𝐵) = 𝑀 |
| 35 | 31, 34 | eqtri 2250 | . . 3 ⊢ (𝐾 + -𝐵) = 𝑀 |
| 36 | 35 | oveq1i 6017 | . 2 ⊢ ((𝐾 + -𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
| 37 | 23, 27, 36 | 3eqtr3i 2258 | 1 ⊢ ((𝐴 − 𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ⊤wtru 1396 ∈ wcel 2200 class class class wbr 4083 (class class class)co 6007 ℝcr 8006 0cc0 8007 + caddc 8010 < clt 8189 − cmin 8325 -cneg 8326 ℕcn 9118 ℕ0cn0 9377 ℤcz 9454 ℚcq 9822 mod cmo 10552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-n0 9378 df-z 9455 df-q 9823 df-rp 9858 df-fl 10498 df-mod 10553 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |