ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fermltl Unicode version

Theorem fermltl 12756
Description: Fermat's little theorem. When  P is prime,  A ^ P  ==  A (mod  P) for any  A, see theorem 5.19 in [ApostolNT] p. 114. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 19-Mar-2022.)
Assertion
Ref Expression
fermltl  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A ^ P
)  mod  P )  =  ( A  mod  P ) )

Proof of Theorem fermltl
StepHypRef Expression
1 prmnn 12632 . . . 4  |-  ( P  e.  Prime  ->  P  e.  NN )
2 dvdsmodexp 12306 . . . . 5  |-  ( ( P  e.  NN  /\  P  e.  NN  /\  P  ||  A )  ->  (
( A ^ P
)  mod  P )  =  ( A  mod  P ) )
323exp 1226 . . . 4  |-  ( P  e.  NN  ->  ( P  e.  NN  ->  ( P  ||  A  -> 
( ( A ^ P )  mod  P
)  =  ( A  mod  P ) ) ) )
41, 1, 3sylc 62 . . 3  |-  ( P  e.  Prime  ->  ( P 
||  A  ->  (
( A ^ P
)  mod  P )  =  ( A  mod  P ) ) )
54adantr 276 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  A  ->  (
( A ^ P
)  mod  P )  =  ( A  mod  P ) ) )
6 coprm 12666 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
7 prmz 12633 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ZZ )
8 gcdcom 12494 . . . . . 6  |-  ( ( P  e.  ZZ  /\  A  e.  ZZ )  ->  ( P  gcd  A
)  =  ( A  gcd  P ) )
97, 8sylan 283 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  gcd  A )  =  ( A  gcd  P
) )
109eqeq1d 2238 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( P  gcd  A
)  =  1  <->  ( A  gcd  P )  =  1 ) )
116, 10bitrd 188 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  <->  ( A  gcd  P )  =  1 ) )
12 simp2 1022 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  A  e.  ZZ )
1313ad2ant1 1042 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  P  e.  NN )
1413phicld 12740 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  ( phi `  P )  e.  NN )
1514nnnn0d 9422 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  ( phi `  P )  e. 
NN0 )
16 zexpcl 10776 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( phi `  P )  e.  NN0 )  -> 
( A ^ ( phi `  P ) )  e.  ZZ )
1712, 15, 16syl2anc 411 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  ( A ^ ( phi `  P ) )  e.  ZZ )
18 zq 9821 . . . . . . 7  |-  ( ( A ^ ( phi `  P ) )  e.  ZZ  ->  ( A ^ ( phi `  P ) )  e.  QQ )
1917, 18syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  ( A ^ ( phi `  P ) )  e.  QQ )
20 1z 9472 . . . . . . 7  |-  1  e.  ZZ
21 zq 9821 . . . . . . 7  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
2220, 21mp1i 10 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  1  e.  QQ )
23 nnq 9828 . . . . . . 7  |-  ( P  e.  NN  ->  P  e.  QQ )
2413, 23syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  P  e.  QQ )
2513nngt0d 9154 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  0  <  P )
26 eulerth 12755 . . . . . . 7  |-  ( ( P  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ ( phi `  P ) )  mod  P )  =  ( 1  mod  P
) )
271, 26syl3an1 1304 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ ( phi `  P ) )  mod  P )  =  ( 1  mod  P
) )
2819, 22, 12, 24, 25, 27modqmul1 10599 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( ( A ^
( phi `  P
) )  x.  A
)  mod  P )  =  ( ( 1  x.  A )  mod 
P ) )
29 phiprm 12745 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  ( phi `  P )  =  ( P  -  1 ) )
30293ad2ant1 1042 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  ( phi `  P )  =  ( P  -  1 ) )
3130oveq2d 6017 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  ( A ^ ( phi `  P ) )  =  ( A ^ ( P  -  1 ) ) )
3231oveq1d 6016 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ ( phi `  P ) )  x.  A )  =  ( ( A ^
( P  -  1 ) )  x.  A
) )
3312zcnd 9570 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  A  e.  CC )
34 expm1t 10789 . . . . . . . 8  |-  ( ( A  e.  CC  /\  P  e.  NN )  ->  ( A ^ P
)  =  ( ( A ^ ( P  -  1 ) )  x.  A ) )
3533, 13, 34syl2anc 411 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  ( A ^ P )  =  ( ( A ^
( P  -  1 ) )  x.  A
) )
3632, 35eqtr4d 2265 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ ( phi `  P ) )  x.  A )  =  ( A ^ P
) )
3736oveq1d 6016 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( ( A ^
( phi `  P
) )  x.  A
)  mod  P )  =  ( ( A ^ P )  mod 
P ) )
3833mulid2d 8165 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
1  x.  A )  =  A )
3938oveq1d 6016 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( 1  x.  A
)  mod  P )  =  ( A  mod  P ) )
4028, 37, 393eqtr3d 2270 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ P
)  mod  P )  =  ( A  mod  P ) )
41403expia 1229 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A  gcd  P
)  =  1  -> 
( ( A ^ P )  mod  P
)  =  ( A  mod  P ) ) )
4211, 41sylbid 150 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  -> 
( ( A ^ P )  mod  P
)  =  ( A  mod  P ) ) )
43 dvdsdc 12309 . . . 4  |-  ( ( P  e.  NN  /\  A  e.  ZZ )  -> DECID  P 
||  A )
441, 43sylan 283 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  -> DECID  P  ||  A )
45 exmiddc 841 . . 3  |-  (DECID  P  ||  A  ->  ( P  ||  A  \/  -.  P  ||  A ) )
4644, 45syl 14 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  A  \/  -.  P  ||  A ) )
475, 42, 46mpjaod 723 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A ^ P
)  mod  P )  =  ( A  mod  P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   CCcc 7997   1c1 8000    x. cmul 8004    - cmin 8317   NNcn 9110   NN0cn0 9369   ZZcz 9446   QQcq 9814    mod cmo 10544   ^cexp 10760    || cdvds 12298    gcd cgcd 12474   Primecprime 12629   phicphi 12731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-2o 6563  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-sup 7151  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-proddc 12062  df-dvds 12299  df-gcd 12475  df-prm 12630  df-phi 12733
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator