ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fermltl Unicode version

Theorem fermltl 12097
Description: Fermat's little theorem. When  P is prime,  A ^ P  ==  A (mod  P) for any  A, see theorem 5.19 in [ApostolNT] p. 114. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 19-Mar-2022.)
Assertion
Ref Expression
fermltl  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A ^ P
)  mod  P )  =  ( A  mod  P ) )

Proof of Theorem fermltl
StepHypRef Expression
1 prmnn 11978 . . . 4  |-  ( P  e.  Prime  ->  P  e.  NN )
2 dvdsmodexp 11684 . . . . 5  |-  ( ( P  e.  NN  /\  P  e.  NN  /\  P  ||  A )  ->  (
( A ^ P
)  mod  P )  =  ( A  mod  P ) )
323exp 1184 . . . 4  |-  ( P  e.  NN  ->  ( P  e.  NN  ->  ( P  ||  A  -> 
( ( A ^ P )  mod  P
)  =  ( A  mod  P ) ) ) )
41, 1, 3sylc 62 . . 3  |-  ( P  e.  Prime  ->  ( P 
||  A  ->  (
( A ^ P
)  mod  P )  =  ( A  mod  P ) ) )
54adantr 274 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  A  ->  (
( A ^ P
)  mod  P )  =  ( A  mod  P ) ) )
6 coprm 12009 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
7 prmz 11979 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ZZ )
8 gcdcom 11848 . . . . . 6  |-  ( ( P  e.  ZZ  /\  A  e.  ZZ )  ->  ( P  gcd  A
)  =  ( A  gcd  P ) )
97, 8sylan 281 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  gcd  A )  =  ( A  gcd  P
) )
109eqeq1d 2166 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( P  gcd  A
)  =  1  <->  ( A  gcd  P )  =  1 ) )
116, 10bitrd 187 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  <->  ( A  gcd  P )  =  1 ) )
12 simp2 983 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  A  e.  ZZ )
1313ad2ant1 1003 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  P  e.  NN )
1413phicld 12081 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  ( phi `  P )  e.  NN )
1514nnnn0d 9137 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  ( phi `  P )  e. 
NN0 )
16 zexpcl 10427 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( phi `  P )  e.  NN0 )  -> 
( A ^ ( phi `  P ) )  e.  ZZ )
1712, 15, 16syl2anc 409 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  ( A ^ ( phi `  P ) )  e.  ZZ )
18 zq 9528 . . . . . . 7  |-  ( ( A ^ ( phi `  P ) )  e.  ZZ  ->  ( A ^ ( phi `  P ) )  e.  QQ )
1917, 18syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  ( A ^ ( phi `  P ) )  e.  QQ )
20 1z 9187 . . . . . . 7  |-  1  e.  ZZ
21 zq 9528 . . . . . . 7  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
2220, 21mp1i 10 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  1  e.  QQ )
23 nnq 9535 . . . . . . 7  |-  ( P  e.  NN  ->  P  e.  QQ )
2413, 23syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  P  e.  QQ )
2513nngt0d 8871 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  0  <  P )
26 eulerth 12096 . . . . . . 7  |-  ( ( P  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ ( phi `  P ) )  mod  P )  =  ( 1  mod  P
) )
271, 26syl3an1 1253 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ ( phi `  P ) )  mod  P )  =  ( 1  mod  P
) )
2819, 22, 12, 24, 25, 27modqmul1 10269 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( ( A ^
( phi `  P
) )  x.  A
)  mod  P )  =  ( ( 1  x.  A )  mod 
P ) )
29 phiprm 12086 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  ( phi `  P )  =  ( P  -  1 ) )
30293ad2ant1 1003 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  ( phi `  P )  =  ( P  -  1 ) )
3130oveq2d 5837 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  ( A ^ ( phi `  P ) )  =  ( A ^ ( P  -  1 ) ) )
3231oveq1d 5836 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ ( phi `  P ) )  x.  A )  =  ( ( A ^
( P  -  1 ) )  x.  A
) )
3312zcnd 9281 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  A  e.  CC )
34 expm1t 10440 . . . . . . . 8  |-  ( ( A  e.  CC  /\  P  e.  NN )  ->  ( A ^ P
)  =  ( ( A ^ ( P  -  1 ) )  x.  A ) )
3533, 13, 34syl2anc 409 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  ( A ^ P )  =  ( ( A ^
( P  -  1 ) )  x.  A
) )
3632, 35eqtr4d 2193 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ ( phi `  P ) )  x.  A )  =  ( A ^ P
) )
3736oveq1d 5836 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( ( A ^
( phi `  P
) )  x.  A
)  mod  P )  =  ( ( A ^ P )  mod 
P ) )
3833mulid2d 7890 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
1  x.  A )  =  A )
3938oveq1d 5836 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( 1  x.  A
)  mod  P )  =  ( A  mod  P ) )
4028, 37, 393eqtr3d 2198 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ P
)  mod  P )  =  ( A  mod  P ) )
41403expia 1187 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A  gcd  P
)  =  1  -> 
( ( A ^ P )  mod  P
)  =  ( A  mod  P ) ) )
4211, 41sylbid 149 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  -> 
( ( A ^ P )  mod  P
)  =  ( A  mod  P ) ) )
43 dvdsdc 11687 . . . 4  |-  ( ( P  e.  NN  /\  A  e.  ZZ )  -> DECID  P 
||  A )
441, 43sylan 281 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  -> DECID  P  ||  A )
45 exmiddc 822 . . 3  |-  (DECID  P  ||  A  ->  ( P  ||  A  \/  -.  P  ||  A ) )
4644, 45syl 14 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  A  \/  -.  P  ||  A ) )
475, 42, 46mpjaod 708 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A ^ P
)  mod  P )  =  ( A  mod  P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 820    /\ w3a 963    = wceq 1335    e. wcel 2128   class class class wbr 3965   ` cfv 5169  (class class class)co 5821   CCcc 7724   1c1 7727    x. cmul 7731    - cmin 8040   NNcn 8827   NN0cn0 9084   ZZcz 9161   QQcq 9521    mod cmo 10214   ^cexp 10411    || cdvds 11676    gcd cgcd 11821   Primecprime 11975   phicphi 12073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845  ax-caucvg 7846
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-isom 5178  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-frec 6335  df-1o 6360  df-2o 6361  df-oadd 6364  df-er 6477  df-en 6683  df-dom 6684  df-fin 6685  df-sup 6924  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-n0 9085  df-z 9162  df-uz 9434  df-q 9522  df-rp 9554  df-fz 9906  df-fzo 10035  df-fl 10162  df-mod 10215  df-seqfrec 10338  df-exp 10412  df-ihash 10643  df-cj 10735  df-re 10736  df-im 10737  df-rsqrt 10891  df-abs 10892  df-clim 11169  df-proddc 11441  df-dvds 11677  df-gcd 11822  df-prm 11976  df-phi 12074
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator