Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemcl Unicode version

Theorem trilpolemcl 14344
Description: Lemma for trilpo 14350. The sum exists. (Contributed by Jim Kingdon, 23-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
trilpolemgt1.a  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)
Assertion
Ref Expression
trilpolemcl  |-  ( ph  ->  A  e.  RR )
Distinct variable groups:    i, F    ph, i
Allowed substitution hint:    A( i)

Proof of Theorem trilpolemcl
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 trilpolemgt1.a . 2  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)
2 nnuz 9534 . . 3  |-  NN  =  ( ZZ>= `  1 )
3 1zzd 9251 . . 3  |-  ( ph  ->  1  e.  ZZ )
4 eqid 2175 . . . 4  |-  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) )  =  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) )
5 oveq2 5873 . . . . . 6  |-  ( n  =  i  ->  (
2 ^ n )  =  ( 2 ^ i ) )
65oveq2d 5881 . . . . 5  |-  ( n  =  i  ->  (
1  /  ( 2 ^ n ) )  =  ( 1  / 
( 2 ^ i
) ) )
7 fveq2 5507 . . . . 5  |-  ( n  =  i  ->  ( F `  n )  =  ( F `  i ) )
86, 7oveq12d 5883 . . . 4  |-  ( n  =  i  ->  (
( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) )  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) ) )
9 simpr 110 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  NN )
10 2rp 9627 . . . . . . . 8  |-  2  e.  RR+
1110a1i 9 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN )  ->  2  e.  RR+ )
12 nnz 9243 . . . . . . . 8  |-  ( i  e.  NN  ->  i  e.  ZZ )
1312adantl 277 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  ZZ )
1411, 13rpexpcld 10645 . . . . . 6  |-  ( (
ph  /\  i  e.  NN )  ->  ( 2 ^ i )  e.  RR+ )
1514rprecred 9677 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( 1  /  ( 2 ^ i ) )  e.  RR )
16 0re 7932 . . . . . . . 8  |-  0  e.  RR
17 eleq1 2238 . . . . . . . 8  |-  ( ( F `  i )  =  0  ->  (
( F `  i
)  e.  RR  <->  0  e.  RR ) )
1816, 17mpbiri 168 . . . . . . 7  |-  ( ( F `  i )  =  0  ->  ( F `  i )  e.  RR )
1918a1i 9 . . . . . 6  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( F `  i )  =  0  ->  ( F `  i )  e.  RR ) )
20 1re 7931 . . . . . . . 8  |-  1  e.  RR
21 eleq1 2238 . . . . . . . 8  |-  ( ( F `  i )  =  1  ->  (
( F `  i
)  e.  RR  <->  1  e.  RR ) )
2220, 21mpbiri 168 . . . . . . 7  |-  ( ( F `  i )  =  1  ->  ( F `  i )  e.  RR )
2322a1i 9 . . . . . 6  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( F `  i )  =  1  ->  ( F `  i )  e.  RR ) )
24 trilpolemgt1.f . . . . . . . 8  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
2524ffvelcdmda 5643 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  e. 
{ 0 ,  1 } )
26 elpri 3612 . . . . . . 7  |-  ( ( F `  i )  e.  { 0 ,  1 }  ->  (
( F `  i
)  =  0  \/  ( F `  i
)  =  1 ) )
2725, 26syl 14 . . . . . 6  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( F `  i )  =  0  \/  ( F `  i )  =  1 ) )
2819, 23, 27mpjaod 718 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  e.  RR )
2915, 28remulcld 7962 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  e.  RR )
304, 8, 9, 29fvmptd3 5601 . . 3  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) ) ) `  i )  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) ) )
3124, 4trilpolemclim 14343 . . 3  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) ) )  e.  dom  ~~>  )
322, 3, 30, 29, 31isumrecl 11403 . 2  |-  ( ph  -> 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  e.  RR )
331, 32eqeltrid 2262 1  |-  ( ph  ->  A  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    = wceq 1353    e. wcel 2146   {cpr 3590    |-> cmpt 4059   -->wf 5204   ` cfv 5208  (class class class)co 5865   RRcr 7785   0cc0 7786   1c1 7787    x. cmul 7791    / cdiv 8601   NNcn 8890   2c2 8941   ZZcz 9224   RR+crp 9622   ^cexp 10487   sum_csu 11327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-frec 6382  df-1o 6407  df-oadd 6411  df-er 6525  df-en 6731  df-dom 6732  df-fin 6733  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-3 8950  df-4 8951  df-n0 9148  df-z 9225  df-uz 9500  df-q 9591  df-rp 9623  df-ico 9863  df-fz 9978  df-fzo 10111  df-seqfrec 10414  df-exp 10488  df-ihash 10722  df-cj 10817  df-re 10818  df-im 10819  df-rsqrt 10973  df-abs 10974  df-clim 11253  df-sumdc 11328
This theorem is referenced by:  trilpolemgt1  14346  trilpolemeq1  14347  trilpolemlt1  14348  trilpo  14350  redcwlpo  14362  nconstwlpolem  14371  neapmkvlem  14373  neapmkv  14374
  Copyright terms: Public domain W3C validator