ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfldui Unicode version

Theorem cnfldui 14518
Description: The invertible complex numbers are exactly those apart from zero. This is recapb 8786 but expressed in terms of ℂfld. (Contributed by Jim Kingdon, 11-Sep-2025.)
Assertion
Ref Expression
cnfldui  |-  { z  e.  CC  |  z #  0 }  =  (Unit ` fld )

Proof of Theorem cnfldui
Dummy variables  v  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recapb 8786 . . . . 5  |-  ( x  e.  CC  ->  (
x #  0  <->  E. y  e.  CC  ( x  x.  y )  =  1 ) )
21pm5.32i 454 . . . 4  |-  ( ( x  e.  CC  /\  x #  0 )  <->  ( x  e.  CC  /\  E. y  e.  CC  ( x  x.  y )  =  1 ) )
3 breq1 4065 . . . . 5  |-  ( z  =  x  ->  (
z #  0  <->  x #  0
) )
43elrab 2939 . . . 4  |-  ( x  e.  { z  e.  CC  |  z #  0 }  <->  ( x  e.  CC  /\  x #  0 ) )
5 cncrng 14498 . . . . . 6  |-fld  e.  CRing
6 eqid 2209 . . . . . . 7  |-  (Unit ` fld )  =  (Unit ` fld )
7 cnfld1 14501 . . . . . . 7  |-  1  =  ( 1r ` fld )
8 eqid 2209 . . . . . . 7  |-  ( ||r ` fld )  =  ( ||r ` fld )
96, 7, 8crngunit 14040 . . . . . 6  |-  (fld  e.  CRing  -> 
( x  e.  (Unit ` fld ) 
<->  x ( ||r `
fld ) 1 ) )
105, 9ax-mp 5 . . . . 5  |-  ( x  e.  (Unit ` fld )  <->  x ( ||r ` fld ) 1 )
11 cnfldbas 14489 . . . . . . . 8  |-  CC  =  ( Base ` fld )
1211a1i 9 . . . . . . 7  |-  ( T. 
->  CC  =  ( Base ` fld ) )
13 eqidd 2210 . . . . . . 7  |-  ( T. 
->  ( ||r `
fld )  =  ( ||r ` fld ) )
14 cnring 14499 . . . . . . . . 9  |-fld  e.  Ring
15 ringsrg 13976 . . . . . . . . 9  |-  (fld  e.  Ring  ->fld  e. SRing )
1614, 15ax-mp 5 . . . . . . . 8  |-fld  e. SRing
1716a1i 9 . . . . . . 7  |-  ( T. 
->fld  e. SRing
)
18 mpocnfldmul 14492 . . . . . . . 8  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  =  ( .r ` fld )
1918a1i 9 . . . . . . 7  |-  ( T. 
->  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v
) )  =  ( .r ` fld ) )
2012, 13, 17, 19dvdsrd 14023 . . . . . 6  |-  ( T. 
->  ( x ( ||r ` fld ) 1  <->  ( x  e.  CC  /\  E. y  e.  CC  ( y ( u  e.  CC , 
v  e.  CC  |->  ( u  x.  v ) ) x )  =  1 ) ) )
2120mptru 1384 . . . . 5  |-  ( x ( ||r `
fld ) 1  <->  ( x  e.  CC  /\  E. y  e.  CC  ( y ( u  e.  CC , 
v  e.  CC  |->  ( u  x.  v ) ) x )  =  1 ) )
22 simpr 110 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  y  e.  CC )
23 simpl 109 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  x  e.  CC )
2422, 23mulcld 8135 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( y  x.  x
)  e.  CC )
25 oveq1 5981 . . . . . . . . . . 11  |-  ( u  =  y  ->  (
u  x.  v )  =  ( y  x.  v ) )
26 oveq2 5982 . . . . . . . . . . 11  |-  ( v  =  x  ->  (
y  x.  v )  =  ( y  x.  x ) )
27 eqid 2209 . . . . . . . . . . 11  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  =  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )
2825, 26, 27ovmpog 6110 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  x  e.  CC  /\  (
y  x.  x )  e.  CC )  -> 
( y ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) x )  =  ( y  x.  x ) )
2922, 23, 24, 28syl3anc 1252 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( y ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) x )  =  ( y  x.  x ) )
30 mulcom 8096 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  =  ( y  x.  x ) )
3129, 30eqtr4d 2245 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( y ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) x )  =  ( x  x.  y ) )
3231eqeq1d 2218 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( y ( u  e.  CC , 
v  e.  CC  |->  ( u  x.  v ) ) x )  =  1  <->  ( x  x.  y )  =  1 ) )
3332rexbidva 2507 . . . . . 6  |-  ( x  e.  CC  ->  ( E. y  e.  CC  ( y ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) x )  =  1  <->  E. y  e.  CC  ( x  x.  y
)  =  1 ) )
3433pm5.32i 454 . . . . 5  |-  ( ( x  e.  CC  /\  E. y  e.  CC  (
y ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) x )  =  1 )  <-> 
( x  e.  CC  /\ 
E. y  e.  CC  ( x  x.  y
)  =  1 ) )
3510, 21, 343bitri 206 . . . 4  |-  ( x  e.  (Unit ` fld )  <->  ( x  e.  CC  /\  E. y  e.  CC  ( x  x.  y )  =  1 ) )
362, 4, 353bitr4ri 213 . . 3  |-  ( x  e.  (Unit ` fld )  <->  x  e.  { z  e.  CC  |  z #  0 } )
3736eqriv 2206 . 2  |-  (Unit ` fld )  =  { z  e.  CC  |  z #  0 }
3837eqcomi 2213 1  |-  { z  e.  CC  |  z #  0 }  =  (Unit ` fld )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1375   T. wtru 1376    e. wcel 2180   E.wrex 2489   {crab 2492   class class class wbr 4062   ` cfv 5294  (class class class)co 5974    e. cmpo 5976   CCcc 7965   0cc0 7967   1c1 7968    x. cmul 7972   # cap 8696   Basecbs 12998   .rcmulr 13077  SRingcsrg 13892   Ringcrg 13925   CRingccrg 13926   ||rcdsr 14015  Unitcui 14016  ℂfldccnfld 14485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-addf 8089  ax-mulf 8090
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-tpos 6361  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-uz 9691  df-rp 9818  df-fz 10173  df-cj 11319  df-abs 11476  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-plusg 13089  df-mulr 13090  df-starv 13091  df-tset 13095  df-ple 13096  df-ds 13098  df-unif 13099  df-0g 13257  df-topgen 13259  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503  df-cmn 13789  df-abl 13790  df-mgp 13850  df-ur 13889  df-srg 13893  df-ring 13927  df-cring 13928  df-oppr 13997  df-dvdsr 14018  df-unit 14019  df-bl 14475  df-mopn 14476  df-fg 14478  df-metu 14479  df-cnfld 14486
This theorem is referenced by:  expghmap  14536  lgseisenlem4  15717
  Copyright terms: Public domain W3C validator