ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfldui Unicode version

Theorem cnfldui 14561
Description: The invertible complex numbers are exactly those apart from zero. This is recapb 8826 but expressed in terms of ℂfld. (Contributed by Jim Kingdon, 11-Sep-2025.)
Assertion
Ref Expression
cnfldui  |-  { z  e.  CC  |  z #  0 }  =  (Unit ` fld )

Proof of Theorem cnfldui
Dummy variables  v  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recapb 8826 . . . . 5  |-  ( x  e.  CC  ->  (
x #  0  <->  E. y  e.  CC  ( x  x.  y )  =  1 ) )
21pm5.32i 454 . . . 4  |-  ( ( x  e.  CC  /\  x #  0 )  <->  ( x  e.  CC  /\  E. y  e.  CC  ( x  x.  y )  =  1 ) )
3 breq1 4086 . . . . 5  |-  ( z  =  x  ->  (
z #  0  <->  x #  0
) )
43elrab 2959 . . . 4  |-  ( x  e.  { z  e.  CC  |  z #  0 }  <->  ( x  e.  CC  /\  x #  0 ) )
5 cncrng 14541 . . . . . 6  |-fld  e.  CRing
6 eqid 2229 . . . . . . 7  |-  (Unit ` fld )  =  (Unit ` fld )
7 cnfld1 14544 . . . . . . 7  |-  1  =  ( 1r ` fld )
8 eqid 2229 . . . . . . 7  |-  ( ||r ` fld )  =  ( ||r ` fld )
96, 7, 8crngunit 14083 . . . . . 6  |-  (fld  e.  CRing  -> 
( x  e.  (Unit ` fld ) 
<->  x ( ||r `
fld ) 1 ) )
105, 9ax-mp 5 . . . . 5  |-  ( x  e.  (Unit ` fld )  <->  x ( ||r ` fld ) 1 )
11 cnfldbas 14532 . . . . . . . 8  |-  CC  =  ( Base ` fld )
1211a1i 9 . . . . . . 7  |-  ( T. 
->  CC  =  ( Base ` fld ) )
13 eqidd 2230 . . . . . . 7  |-  ( T. 
->  ( ||r `
fld )  =  ( ||r ` fld ) )
14 cnring 14542 . . . . . . . . 9  |-fld  e.  Ring
15 ringsrg 14018 . . . . . . . . 9  |-  (fld  e.  Ring  ->fld  e. SRing )
1614, 15ax-mp 5 . . . . . . . 8  |-fld  e. SRing
1716a1i 9 . . . . . . 7  |-  ( T. 
->fld  e. SRing
)
18 mpocnfldmul 14535 . . . . . . . 8  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  =  ( .r ` fld )
1918a1i 9 . . . . . . 7  |-  ( T. 
->  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v
) )  =  ( .r ` fld ) )
2012, 13, 17, 19dvdsrd 14066 . . . . . 6  |-  ( T. 
->  ( x ( ||r ` fld ) 1  <->  ( x  e.  CC  /\  E. y  e.  CC  ( y ( u  e.  CC , 
v  e.  CC  |->  ( u  x.  v ) ) x )  =  1 ) ) )
2120mptru 1404 . . . . 5  |-  ( x ( ||r `
fld ) 1  <->  ( x  e.  CC  /\  E. y  e.  CC  ( y ( u  e.  CC , 
v  e.  CC  |->  ( u  x.  v ) ) x )  =  1 ) )
22 simpr 110 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  y  e.  CC )
23 simpl 109 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  x  e.  CC )
2422, 23mulcld 8175 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( y  x.  x
)  e.  CC )
25 oveq1 6014 . . . . . . . . . . 11  |-  ( u  =  y  ->  (
u  x.  v )  =  ( y  x.  v ) )
26 oveq2 6015 . . . . . . . . . . 11  |-  ( v  =  x  ->  (
y  x.  v )  =  ( y  x.  x ) )
27 eqid 2229 . . . . . . . . . . 11  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  =  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )
2825, 26, 27ovmpog 6145 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  x  e.  CC  /\  (
y  x.  x )  e.  CC )  -> 
( y ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) x )  =  ( y  x.  x ) )
2922, 23, 24, 28syl3anc 1271 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( y ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) x )  =  ( y  x.  x ) )
30 mulcom 8136 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  =  ( y  x.  x ) )
3129, 30eqtr4d 2265 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( y ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) x )  =  ( x  x.  y ) )
3231eqeq1d 2238 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( y ( u  e.  CC , 
v  e.  CC  |->  ( u  x.  v ) ) x )  =  1  <->  ( x  x.  y )  =  1 ) )
3332rexbidva 2527 . . . . . 6  |-  ( x  e.  CC  ->  ( E. y  e.  CC  ( y ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) x )  =  1  <->  E. y  e.  CC  ( x  x.  y
)  =  1 ) )
3433pm5.32i 454 . . . . 5  |-  ( ( x  e.  CC  /\  E. y  e.  CC  (
y ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) x )  =  1 )  <-> 
( x  e.  CC  /\ 
E. y  e.  CC  ( x  x.  y
)  =  1 ) )
3510, 21, 343bitri 206 . . . 4  |-  ( x  e.  (Unit ` fld )  <->  ( x  e.  CC  /\  E. y  e.  CC  ( x  x.  y )  =  1 ) )
362, 4, 353bitr4ri 213 . . 3  |-  ( x  e.  (Unit ` fld )  <->  x  e.  { z  e.  CC  |  z #  0 } )
3736eqriv 2226 . 2  |-  (Unit ` fld )  =  { z  e.  CC  |  z #  0 }
3837eqcomi 2233 1  |-  { z  e.  CC  |  z #  0 }  =  (Unit ` fld )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395   T. wtru 1396    e. wcel 2200   E.wrex 2509   {crab 2512   class class class wbr 4083   ` cfv 5318  (class class class)co 6007    e. cmpo 6009   CCcc 8005   0cc0 8007   1c1 8008    x. cmul 8012   # cap 8736   Basecbs 13040   .rcmulr 13119  SRingcsrg 13934   Ringcrg 13967   CRingccrg 13968   ||rcdsr 14057  Unitcui 14058  ℂfldccnfld 14528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-addf 8129  ax-mulf 8130
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-tpos 6397  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-dec 9587  df-uz 9731  df-rp 9858  df-fz 10213  df-cj 11361  df-abs 11518  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-starv 13133  df-tset 13137  df-ple 13138  df-ds 13140  df-unif 13141  df-0g 13299  df-topgen 13301  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-cmn 13831  df-abl 13832  df-mgp 13892  df-ur 13931  df-srg 13935  df-ring 13969  df-cring 13970  df-oppr 14039  df-dvdsr 14060  df-unit 14061  df-bl 14518  df-mopn 14519  df-fg 14521  df-metu 14522  df-cnfld 14529
This theorem is referenced by:  expghmap  14579  lgseisenlem4  15760
  Copyright terms: Public domain W3C validator