| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > npcand | GIF version | ||
| Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| npcand | ⊢ (𝜑 → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | npcan 8288 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 (class class class)co 5951 ℂcc 7930 + caddc 7935 − cmin 8250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-setind 4589 ax-resscn 8024 ax-1cn 8025 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-sub 8252 |
| This theorem is referenced by: addlsub 8449 npcan1 8457 ltsubadd 8512 lesubadd 8514 ltaddsub 8516 leaddsub 8518 lesub1 8536 ltsub1 8538 lincmb01cmp 10132 expaddzaplem 10734 bcpasc 10918 bcn2m1 10921 zfz1isolemsplit 10990 zfz1isolem1 10992 shftuz 11172 seq3shft 11193 arisum2 11854 cvgratnnlemsumlt 11883 ntrivcvgap 11903 fprodm1 11953 sin01bnd 12112 cos12dec 12123 moddvds 12154 dvdsexp 12216 zeo3 12223 divalglemnn 12273 bitscmp 12313 uzwodc 12402 hashdvds 12587 dvcnp2cntop 15215 lgseisenlem4 15594 lgsquadlem1 15598 |
| Copyright terms: Public domain | W3C validator |