ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmind Unicode version

Theorem prmind 11802
Description: Perform induction over the multiplicative structure of  NN. If a property  ph ( x ) holds for the primes and  1 and is preserved under multiplication, then it holds for every positive integer. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
prmind.1  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
prmind.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
prmind.3  |-  ( x  =  z  ->  ( ph 
<->  th ) )
prmind.4  |-  ( x  =  ( y  x.  z )  ->  ( ph 
<->  ta ) )
prmind.5  |-  ( x  =  A  ->  ( ph 
<->  et ) )
prmind.6  |-  ps
prmind.7  |-  ( x  e.  Prime  ->  ph )
prmind.8  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( ( ch  /\  th )  ->  ta ) )
Assertion
Ref Expression
prmind  |-  ( A  e.  NN  ->  et )
Distinct variable groups:    x, y    x, A    x, z, ch    et, x    ta, x    th, x    y, z, ph
Allowed substitution hints:    ph( x)    ps( x, y, z)    ch( y)    th( y,
z)    ta( y, z)    et( y, z)    A( y, z)

Proof of Theorem prmind
StepHypRef Expression
1 prmind.1 . 2  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
2 prmind.2 . 2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
3 prmind.3 . 2  |-  ( x  =  z  ->  ( ph 
<->  th ) )
4 prmind.4 . 2  |-  ( x  =  ( y  x.  z )  ->  ( ph 
<->  ta ) )
5 prmind.5 . 2  |-  ( x  =  A  ->  ( ph 
<->  et ) )
6 prmind.6 . 2  |-  ps
7 prmind.7 . . 3  |-  ( x  e.  Prime  ->  ph )
87adantr 274 . 2  |-  ( ( x  e.  Prime  /\  A. y  e.  ( 1 ... ( x  - 
1 ) ) ch )  ->  ph )
9 prmind.8 . 2  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( ( ch  /\  th )  ->  ta ) )
101, 2, 3, 4, 5, 6, 8, 9prmind2 11801 1  |-  ( A  e.  NN  ->  et )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   ` cfv 5123  (class class class)co 5774   1c1 7621    x. cmul 7625    - cmin 7933   NNcn 8720   2c2 8771   ZZ>=cuz 9326   ...cfz 9790   Primecprime 11788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-1o 6313  df-2o 6314  df-er 6429  df-en 6635  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-dvds 11494  df-prm 11789
This theorem is referenced by:  exprmfct  11818
  Copyright terms: Public domain W3C validator