| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pws0g | GIF version | ||
| Description: The identity in a structure power of a monoid. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwsmnd.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pws0g.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| pws0g | ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 0 }) = (0g‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . 3 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
| 2 | simpr 110 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ 𝑉) | |
| 3 | scaslid 12855 | . . . . 5 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | |
| 4 | 3 | slotex 12730 | . . . 4 ⊢ (𝑅 ∈ Mnd → (Scalar‘𝑅) ∈ V) |
| 5 | 4 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (Scalar‘𝑅) ∈ V) |
| 6 | fconst6g 5459 | . . . 4 ⊢ (𝑅 ∈ Mnd → (𝐼 × {𝑅}):𝐼⟶Mnd) | |
| 7 | 6 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × {𝑅}):𝐼⟶Mnd) |
| 8 | 1, 2, 5, 7 | prds0g 13151 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (0g ∘ (𝐼 × {𝑅})) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 9 | fconstmpt 4711 | . . 3 ⊢ (𝐼 × { 0 }) = (𝑥 ∈ 𝐼 ↦ 0 ) | |
| 10 | elex 2774 | . . . . 5 ⊢ (𝑅 ∈ Mnd → 𝑅 ∈ V) | |
| 11 | 10 | ad2antrr 488 | . . . 4 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ V) |
| 12 | fconstmpt 4711 | . . . . 5 ⊢ (𝐼 × {𝑅}) = (𝑥 ∈ 𝐼 ↦ 𝑅) | |
| 13 | 12 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × {𝑅}) = (𝑥 ∈ 𝐼 ↦ 𝑅)) |
| 14 | fn0g 13077 | . . . . 5 ⊢ 0g Fn V | |
| 15 | dffn5im 5609 | . . . . 5 ⊢ (0g Fn V → 0g = (𝑟 ∈ V ↦ (0g‘𝑟))) | |
| 16 | 14, 15 | mp1i 10 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 0g = (𝑟 ∈ V ↦ (0g‘𝑟))) |
| 17 | fveq2 5561 | . . . . 5 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
| 18 | pws0g.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 19 | 17, 18 | eqtr4di 2247 | . . . 4 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
| 20 | 11, 13, 16, 19 | fmptco 5731 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (0g ∘ (𝐼 × {𝑅})) = (𝑥 ∈ 𝐼 ↦ 0 )) |
| 21 | 9, 20 | eqtr4id 2248 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 0 }) = (0g ∘ (𝐼 × {𝑅}))) |
| 22 | pwsmnd.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 23 | eqid 2196 | . . . 4 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 24 | 22, 23 | pwsval 12993 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 25 | 24 | fveq2d 5565 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (0g‘𝑌) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 26 | 8, 21, 25 | 3eqtr4d 2239 | 1 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 0 }) = (0g‘𝑌)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3623 ↦ cmpt 4095 × cxp 4662 ∘ ccom 4668 Fn wfn 5254 ⟶wf 5255 ‘cfv 5259 (class class class)co 5925 Scalarcsca 12783 0gc0g 12958 Xscprds 12967 ↑s cpws 12968 Mndcmnd 13118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-map 6718 df-ixp 6767 df-sup 7059 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-z 9344 df-dec 9475 df-uz 9619 df-fz 10101 df-struct 12705 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-ip 12798 df-tset 12799 df-ple 12800 df-ds 12802 df-hom 12804 df-cco 12805 df-rest 12943 df-topn 12944 df-0g 12960 df-topgen 12962 df-pt 12963 df-prds 12969 df-pws 12992 df-mgm 13058 df-sgrp 13104 df-mnd 13119 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |