| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pws0g | GIF version | ||
| Description: The identity in a structure power of a monoid. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwsmnd.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pws0g.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| pws0g | ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 0 }) = (0g‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . 3 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
| 2 | simpr 110 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ 𝑉) | |
| 3 | scaslid 13029 | . . . . 5 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | |
| 4 | 3 | slotex 12903 | . . . 4 ⊢ (𝑅 ∈ Mnd → (Scalar‘𝑅) ∈ V) |
| 5 | 4 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (Scalar‘𝑅) ∈ V) |
| 6 | fconst6g 5481 | . . . 4 ⊢ (𝑅 ∈ Mnd → (𝐼 × {𝑅}):𝐼⟶Mnd) | |
| 7 | 6 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × {𝑅}):𝐼⟶Mnd) |
| 8 | 1, 2, 5, 7 | prds0g 13325 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (0g ∘ (𝐼 × {𝑅})) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 9 | fconstmpt 4726 | . . 3 ⊢ (𝐼 × { 0 }) = (𝑥 ∈ 𝐼 ↦ 0 ) | |
| 10 | elex 2784 | . . . . 5 ⊢ (𝑅 ∈ Mnd → 𝑅 ∈ V) | |
| 11 | 10 | ad2antrr 488 | . . . 4 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ V) |
| 12 | fconstmpt 4726 | . . . . 5 ⊢ (𝐼 × {𝑅}) = (𝑥 ∈ 𝐼 ↦ 𝑅) | |
| 13 | 12 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × {𝑅}) = (𝑥 ∈ 𝐼 ↦ 𝑅)) |
| 14 | fn0g 13251 | . . . . 5 ⊢ 0g Fn V | |
| 15 | dffn5im 5631 | . . . . 5 ⊢ (0g Fn V → 0g = (𝑟 ∈ V ↦ (0g‘𝑟))) | |
| 16 | 14, 15 | mp1i 10 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 0g = (𝑟 ∈ V ↦ (0g‘𝑟))) |
| 17 | fveq2 5583 | . . . . 5 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
| 18 | pws0g.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 19 | 17, 18 | eqtr4di 2257 | . . . 4 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
| 20 | 11, 13, 16, 19 | fmptco 5753 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (0g ∘ (𝐼 × {𝑅})) = (𝑥 ∈ 𝐼 ↦ 0 )) |
| 21 | 9, 20 | eqtr4id 2258 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 0 }) = (0g ∘ (𝐼 × {𝑅}))) |
| 22 | pwsmnd.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 23 | eqid 2206 | . . . 4 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 24 | 22, 23 | pwsval 13167 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 25 | 24 | fveq2d 5587 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (0g‘𝑌) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 26 | 8, 21, 25 | 3eqtr4d 2249 | 1 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 0 }) = (0g‘𝑌)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 Vcvv 2773 {csn 3634 ↦ cmpt 4109 × cxp 4677 ∘ ccom 4683 Fn wfn 5271 ⟶wf 5272 ‘cfv 5276 (class class class)co 5951 Scalarcsca 12956 0gc0g 13132 Xscprds 13141 ↑s cpws 13142 Mndcmnd 13292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-map 6744 df-ixp 6793 df-sup 7093 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-z 9380 df-dec 9512 df-uz 9656 df-fz 10138 df-struct 12878 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-mulr 12967 df-sca 12969 df-vsca 12970 df-ip 12971 df-tset 12972 df-ple 12973 df-ds 12975 df-hom 12977 df-cco 12978 df-rest 13117 df-topn 13118 df-0g 13134 df-topgen 13136 df-pt 13137 df-prds 13143 df-pws 13166 df-mgm 13232 df-sgrp 13278 df-mnd 13293 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |