| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusmulrng | GIF version | ||
| Description: Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng 14462. Similar to qusmul2 14458. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 28-Feb-2025.) |
| Ref | Expression |
|---|---|
| qusmulrng.e | ⊢ ∼ = (𝑅 ~QG 𝑆) |
| qusmulrng.h | ⊢ 𝐻 = (𝑅 /s ∼ ) |
| qusmulrng.b | ⊢ 𝐵 = (Base‘𝑅) |
| qusmulrng.p | ⊢ · = (.r‘𝑅) |
| qusmulrng.a | ⊢ ∙ = (.r‘𝐻) |
| Ref | Expression |
|---|---|
| qusmulrng | ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusmulrng.h | . . . 4 ⊢ 𝐻 = (𝑅 /s ∼ ) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝐻 = (𝑅 /s ∼ )) |
| 3 | qusmulrng.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝐵 = (Base‘𝑅)) |
| 5 | qusmulrng.e | . . . . 5 ⊢ ∼ = (𝑅 ~QG 𝑆) | |
| 6 | 3, 5 | eqger 13727 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝑅) → ∼ Er 𝐵) |
| 7 | 6 | 3ad2ant3 1025 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → ∼ Er 𝐵) |
| 8 | simp1 1002 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Rng) | |
| 9 | eqid 2209 | . . . 4 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
| 10 | qusmulrng.p | . . . 4 ⊢ · = (.r‘𝑅) | |
| 11 | 3, 5, 9, 10 | 2idlcpblrng 14452 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → ((𝑎 ∼ 𝑏 ∧ 𝑐 ∼ 𝑑) → (𝑎 · 𝑐) ∼ (𝑏 · 𝑑))) |
| 12 | 8 | anim1i 340 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) → (𝑅 ∈ Rng ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵))) |
| 13 | 3anass 987 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵) ↔ (𝑅 ∈ Rng ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵))) | |
| 14 | 12, 13 | sylibr 134 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) → (𝑅 ∈ Rng ∧ 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) |
| 15 | 3, 10 | rngcl 13873 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵) → (𝑏 · 𝑑) ∈ 𝐵) |
| 16 | 14, 15 | syl 14 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) → (𝑏 · 𝑑) ∈ 𝐵) |
| 17 | qusmulrng.a | . . 3 ⊢ ∙ = (.r‘𝐻) | |
| 18 | 2, 4, 7, 8, 11, 16, 10, 17 | qusmulval 13336 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
| 19 | 18 | 3expb 1209 | 1 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 ‘cfv 5294 (class class class)co 5974 Er wer 6647 [cec 6648 Basecbs 12998 .rcmulr 13077 /s cqus 13299 SubGrpcsubg 13670 ~QG cqg 13672 Rngcrng 13861 2Idealc2idl 14428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-pre-ltirr 8079 ax-pre-lttrn 8081 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-tp 3654 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-tpos 6361 df-er 6650 df-ec 6652 df-qs 6656 df-pnf 8151 df-mnf 8152 df-ltxr 8154 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-iress 13006 df-plusg 13089 df-mulr 13090 df-sca 13092 df-vsca 13093 df-ip 13094 df-0g 13257 df-iimas 13301 df-qus 13302 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 df-minusg 13503 df-sbg 13504 df-subg 13673 df-eqg 13675 df-cmn 13789 df-abl 13790 df-mgp 13850 df-rng 13862 df-oppr 13997 df-lssm 14282 df-sra 14364 df-rgmod 14365 df-lidl 14398 df-2idl 14429 |
| This theorem is referenced by: quscrng 14462 |
| Copyright terms: Public domain | W3C validator |