| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusmulrng | GIF version | ||
| Description: Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng 14505. Similar to qusmul2 14501. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 28-Feb-2025.) |
| Ref | Expression |
|---|---|
| qusmulrng.e | ⊢ ∼ = (𝑅 ~QG 𝑆) |
| qusmulrng.h | ⊢ 𝐻 = (𝑅 /s ∼ ) |
| qusmulrng.b | ⊢ 𝐵 = (Base‘𝑅) |
| qusmulrng.p | ⊢ · = (.r‘𝑅) |
| qusmulrng.a | ⊢ ∙ = (.r‘𝐻) |
| Ref | Expression |
|---|---|
| qusmulrng | ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusmulrng.h | . . . 4 ⊢ 𝐻 = (𝑅 /s ∼ ) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝐻 = (𝑅 /s ∼ )) |
| 3 | qusmulrng.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝐵 = (Base‘𝑅)) |
| 5 | qusmulrng.e | . . . . 5 ⊢ ∼ = (𝑅 ~QG 𝑆) | |
| 6 | 3, 5 | eqger 13769 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝑅) → ∼ Er 𝐵) |
| 7 | 6 | 3ad2ant3 1044 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → ∼ Er 𝐵) |
| 8 | simp1 1021 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Rng) | |
| 9 | eqid 2229 | . . . 4 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
| 10 | qusmulrng.p | . . . 4 ⊢ · = (.r‘𝑅) | |
| 11 | 3, 5, 9, 10 | 2idlcpblrng 14495 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → ((𝑎 ∼ 𝑏 ∧ 𝑐 ∼ 𝑑) → (𝑎 · 𝑐) ∼ (𝑏 · 𝑑))) |
| 12 | 8 | anim1i 340 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) → (𝑅 ∈ Rng ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵))) |
| 13 | 3anass 1006 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵) ↔ (𝑅 ∈ Rng ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵))) | |
| 14 | 12, 13 | sylibr 134 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) → (𝑅 ∈ Rng ∧ 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) |
| 15 | 3, 10 | rngcl 13915 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵) → (𝑏 · 𝑑) ∈ 𝐵) |
| 16 | 14, 15 | syl 14 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) → (𝑏 · 𝑑) ∈ 𝐵) |
| 17 | qusmulrng.a | . . 3 ⊢ ∙ = (.r‘𝐻) | |
| 18 | 2, 4, 7, 8, 11, 16, 10, 17 | qusmulval 13378 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
| 19 | 18 | 3expb 1228 | 1 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ‘cfv 5318 (class class class)co 6007 Er wer 6685 [cec 6686 Basecbs 13040 .rcmulr 13119 /s cqus 13341 SubGrpcsubg 13712 ~QG cqg 13714 Rngcrng 13903 2Idealc2idl 14471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-tpos 6397 df-er 6688 df-ec 6690 df-qs 6694 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 df-plusg 13131 df-mulr 13132 df-sca 13134 df-vsca 13135 df-ip 13136 df-0g 13299 df-iimas 13343 df-qus 13344 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-minusg 13545 df-sbg 13546 df-subg 13715 df-eqg 13717 df-cmn 13831 df-abl 13832 df-mgp 13892 df-rng 13904 df-oppr 14039 df-lssm 14325 df-sra 14407 df-rgmod 14408 df-lidl 14441 df-2idl 14472 |
| This theorem is referenced by: quscrng 14505 |
| Copyright terms: Public domain | W3C validator |