| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusmulrng | GIF version | ||
| Description: Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng 14339. Similar to qusmul2 14335. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 28-Feb-2025.) |
| Ref | Expression |
|---|---|
| qusmulrng.e | ⊢ ∼ = (𝑅 ~QG 𝑆) |
| qusmulrng.h | ⊢ 𝐻 = (𝑅 /s ∼ ) |
| qusmulrng.b | ⊢ 𝐵 = (Base‘𝑅) |
| qusmulrng.p | ⊢ · = (.r‘𝑅) |
| qusmulrng.a | ⊢ ∙ = (.r‘𝐻) |
| Ref | Expression |
|---|---|
| qusmulrng | ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusmulrng.h | . . . 4 ⊢ 𝐻 = (𝑅 /s ∼ ) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝐻 = (𝑅 /s ∼ )) |
| 3 | qusmulrng.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝐵 = (Base‘𝑅)) |
| 5 | qusmulrng.e | . . . . 5 ⊢ ∼ = (𝑅 ~QG 𝑆) | |
| 6 | 3, 5 | eqger 13604 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝑅) → ∼ Er 𝐵) |
| 7 | 6 | 3ad2ant3 1023 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → ∼ Er 𝐵) |
| 8 | simp1 1000 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Rng) | |
| 9 | eqid 2206 | . . . 4 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
| 10 | qusmulrng.p | . . . 4 ⊢ · = (.r‘𝑅) | |
| 11 | 3, 5, 9, 10 | 2idlcpblrng 14329 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → ((𝑎 ∼ 𝑏 ∧ 𝑐 ∼ 𝑑) → (𝑎 · 𝑐) ∼ (𝑏 · 𝑑))) |
| 12 | 8 | anim1i 340 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) → (𝑅 ∈ Rng ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵))) |
| 13 | 3anass 985 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵) ↔ (𝑅 ∈ Rng ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵))) | |
| 14 | 12, 13 | sylibr 134 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) → (𝑅 ∈ Rng ∧ 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) |
| 15 | 3, 10 | rngcl 13750 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵) → (𝑏 · 𝑑) ∈ 𝐵) |
| 16 | 14, 15 | syl 14 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) → (𝑏 · 𝑑) ∈ 𝐵) |
| 17 | qusmulrng.a | . . 3 ⊢ ∙ = (.r‘𝐻) | |
| 18 | 2, 4, 7, 8, 11, 16, 10, 17 | qusmulval 13213 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
| 19 | 18 | 3expb 1207 | 1 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ‘cfv 5276 (class class class)co 5951 Er wer 6624 [cec 6625 Basecbs 12876 .rcmulr 12954 /s cqus 13176 SubGrpcsubg 13547 ~QG cqg 13549 Rngcrng 13738 2Idealc2idl 14305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-pre-ltirr 8044 ax-pre-lttrn 8046 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-tpos 6338 df-er 6627 df-ec 6629 df-qs 6633 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-iress 12884 df-plusg 12966 df-mulr 12967 df-sca 12969 df-vsca 12970 df-ip 12971 df-0g 13134 df-iimas 13178 df-qus 13179 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 df-sbg 13381 df-subg 13550 df-eqg 13552 df-cmn 13666 df-abl 13667 df-mgp 13727 df-rng 13739 df-oppr 13874 df-lssm 14159 df-sra 14241 df-rgmod 14242 df-lidl 14275 df-2idl 14306 |
| This theorem is referenced by: quscrng 14339 |
| Copyright terms: Public domain | W3C validator |