ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusmulrng GIF version

Theorem qusmulrng 14164
Description: Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng 14165. Similar to qusmul2 14161. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 28-Feb-2025.)
Hypotheses
Ref Expression
qusmulrng.e = (𝑅 ~QG 𝑆)
qusmulrng.h 𝐻 = (𝑅 /s )
qusmulrng.b 𝐵 = (Base‘𝑅)
qusmulrng.p · = (.r𝑅)
qusmulrng.a = (.r𝐻)
Assertion
Ref Expression
qusmulrng (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑋𝐵𝑌𝐵)) → ([𝑋] [𝑌] ) = [(𝑋 · 𝑌)] )

Proof of Theorem qusmulrng
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusmulrng.h . . . 4 𝐻 = (𝑅 /s )
21a1i 9 . . 3 ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝐻 = (𝑅 /s ))
3 qusmulrng.b . . . 4 𝐵 = (Base‘𝑅)
43a1i 9 . . 3 ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝐵 = (Base‘𝑅))
5 qusmulrng.e . . . . 5 = (𝑅 ~QG 𝑆)
63, 5eqger 13430 . . . 4 (𝑆 ∈ (SubGrp‘𝑅) → Er 𝐵)
763ad2ant3 1022 . . 3 ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → Er 𝐵)
8 simp1 999 . . 3 ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Rng)
9 eqid 2196 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
10 qusmulrng.p . . . 4 · = (.r𝑅)
113, 5, 9, 102idlcpblrng 14155 . . 3 ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → ((𝑎 𝑏𝑐 𝑑) → (𝑎 · 𝑐) (𝑏 · 𝑑)))
128anim1i 340 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑏𝐵𝑑𝐵)) → (𝑅 ∈ Rng ∧ (𝑏𝐵𝑑𝐵)))
13 3anass 984 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑏𝐵𝑑𝐵) ↔ (𝑅 ∈ Rng ∧ (𝑏𝐵𝑑𝐵)))
1412, 13sylibr 134 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑏𝐵𝑑𝐵)) → (𝑅 ∈ Rng ∧ 𝑏𝐵𝑑𝐵))
153, 10rngcl 13576 . . . 4 ((𝑅 ∈ Rng ∧ 𝑏𝐵𝑑𝐵) → (𝑏 · 𝑑) ∈ 𝐵)
1614, 15syl 14 . . 3 (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑏𝐵𝑑𝐵)) → (𝑏 · 𝑑) ∈ 𝐵)
17 qusmulrng.a . . 3 = (.r𝐻)
182, 4, 7, 8, 11, 16, 10, 17qusmulval 13039 . 2 (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ 𝑋𝐵𝑌𝐵) → ([𝑋] [𝑌] ) = [(𝑋 · 𝑌)] )
19183expb 1206 1 (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑋𝐵𝑌𝐵)) → ([𝑋] [𝑌] ) = [(𝑋 · 𝑌)] )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  cfv 5259  (class class class)co 5925   Er wer 6598  [cec 6599  Basecbs 12703  .rcmulr 12781   /s cqus 13002  SubGrpcsubg 13373   ~QG cqg 13375  Rngcrng 13564  2Idealc2idl 14131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-tpos 6312  df-er 6601  df-ec 6603  df-qs 6607  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-ip 12798  df-0g 12960  df-iimas 13004  df-qus 13005  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-sbg 13207  df-subg 13376  df-eqg 13378  df-cmn 13492  df-abl 13493  df-mgp 13553  df-rng 13565  df-oppr 13700  df-lssm 13985  df-sra 14067  df-rgmod 14068  df-lidl 14101  df-2idl 14132
This theorem is referenced by:  quscrng  14165
  Copyright terms: Public domain W3C validator