![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qusmulrng | GIF version |
Description: Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng 13872. Similar to qusmul2 13868. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 28-Feb-2025.) |
Ref | Expression |
---|---|
qusmulrng.e | ⊢ ∼ = (𝑅 ~QG 𝑆) |
qusmulrng.h | ⊢ 𝐻 = (𝑅 /s ∼ ) |
qusmulrng.b | ⊢ 𝐵 = (Base‘𝑅) |
qusmulrng.p | ⊢ · = (.r‘𝑅) |
qusmulrng.a | ⊢ ∙ = (.r‘𝐻) |
Ref | Expression |
---|---|
qusmulrng | ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusmulrng.h | . . . 4 ⊢ 𝐻 = (𝑅 /s ∼ ) | |
2 | 1 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝐻 = (𝑅 /s ∼ )) |
3 | qusmulrng.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 3 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝐵 = (Base‘𝑅)) |
5 | qusmulrng.e | . . . . 5 ⊢ ∼ = (𝑅 ~QG 𝑆) | |
6 | 3, 5 | eqger 13188 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝑅) → ∼ Er 𝐵) |
7 | 6 | 3ad2ant3 1022 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → ∼ Er 𝐵) |
8 | simp1 999 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Rng) | |
9 | eqid 2189 | . . . 4 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
10 | qusmulrng.p | . . . 4 ⊢ · = (.r‘𝑅) | |
11 | 3, 5, 9, 10 | 2idlcpblrng 13863 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) → ((𝑎 ∼ 𝑏 ∧ 𝑐 ∼ 𝑑) → (𝑎 · 𝑐) ∼ (𝑏 · 𝑑))) |
12 | 8 | anim1i 340 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) → (𝑅 ∈ Rng ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵))) |
13 | 3anass 984 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵) ↔ (𝑅 ∈ Rng ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵))) | |
14 | 12, 13 | sylibr 134 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) → (𝑅 ∈ Rng ∧ 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) |
15 | 3, 10 | rngcl 13323 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵) → (𝑏 · 𝑑) ∈ 𝐵) |
16 | 14, 15 | syl 14 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) → (𝑏 · 𝑑) ∈ 𝐵) |
17 | qusmulrng.a | . . 3 ⊢ ∙ = (.r‘𝐻) | |
18 | 2, 4, 7, 8, 11, 16, 10, 17 | qusmulval 12824 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
19 | 18 | 3expb 1206 | 1 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 ‘cfv 5238 (class class class)co 5900 Er wer 6560 [cec 6561 Basecbs 12523 .rcmulr 12601 /s cqus 12788 SubGrpcsubg 13131 ~QG cqg 13133 Rngcrng 13311 2Idealc2idl 13840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-nul 4147 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-addcom 7946 ax-addass 7948 ax-i2m1 7951 ax-0lt1 7952 ax-0id 7954 ax-rnegex 7955 ax-pre-ltirr 7958 ax-pre-lttrn 7960 ax-pre-ltadd 7962 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3595 df-sn 3616 df-pr 3617 df-tp 3618 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-br 4022 df-opab 4083 df-mpt 4084 df-id 4314 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-1st 6169 df-2nd 6170 df-tpos 6274 df-er 6563 df-ec 6565 df-qs 6569 df-pnf 8029 df-mnf 8030 df-ltxr 8032 df-inn 8955 df-2 9013 df-3 9014 df-4 9015 df-5 9016 df-6 9017 df-7 9018 df-8 9019 df-ndx 12526 df-slot 12527 df-base 12529 df-sets 12530 df-iress 12531 df-plusg 12613 df-mulr 12614 df-sca 12616 df-vsca 12617 df-ip 12618 df-0g 12774 df-iimas 12790 df-qus 12791 df-mgm 12843 df-sgrp 12888 df-mnd 12901 df-grp 12971 df-minusg 12972 df-sbg 12973 df-subg 13134 df-eqg 13136 df-cmn 13250 df-abl 13251 df-mgp 13300 df-rng 13312 df-oppr 13443 df-lssm 13694 df-sra 13776 df-rgmod 13777 df-lidl 13810 df-2idl 13841 |
This theorem is referenced by: quscrng 13872 |
Copyright terms: Public domain | W3C validator |