ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zrhpropd Unicode version

Theorem zrhpropd 14182
Description: The  ZZ ring homomorphism depends only on the ring attributes of a structure. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
zrhpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
zrhpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
zrhpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
zrhpropd.4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
Assertion
Ref Expression
zrhpropd  |-  ( ph  ->  ( ZRHom `  K
)  =  ( ZRHom `  L ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y

Proof of Theorem zrhpropd
StepHypRef Expression
1 eqidd 2197 . . . 4  |-  ( ph  ->  ( Base ` ring )  =  ( Base ` ring ) )
2 zrhpropd.1 . . . 4  |-  ( ph  ->  B  =  ( Base `  K ) )
3 zrhpropd.2 . . . 4  |-  ( ph  ->  B  =  ( Base `  L ) )
4 eqidd 2197 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base ` ring )  /\  y  e.  ( Base ` ring ) ) )  -> 
( x ( +g  ` ring ) y )  =  ( x ( +g  ` ring ) y ) )
5 zrhpropd.3 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
6 eqidd 2197 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base ` ring )  /\  y  e.  ( Base ` ring ) ) )  -> 
( x ( .r
` ring
) y )  =  ( x ( .r
` ring
) y ) )
7 zrhpropd.4 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
81, 2, 1, 3, 4, 5, 6, 7rhmpropd 13810 . . 3  |-  ( ph  ->  (ring RingHom  K )  =  (ring RingHom  L
) )
98unieqd 3850 . 2  |-  ( ph  ->  U. (ring RingHom  K )  =  U. (ring RingHom  L ) )
10 eqid 2196 . . 3  |-  ( ZRHom `  K )  =  ( ZRHom `  K )
1110zrhval 14173 . 2  |-  ( ZRHom `  K )  =  U. (ring RingHom  K )
12 eqid 2196 . . 3  |-  ( ZRHom `  L )  =  ( ZRHom `  L )
1312zrhval 14173 . 2  |-  ( ZRHom `  L )  =  U. (ring RingHom  L )
149, 11, 133eqtr4g 2254 1  |-  ( ph  ->  ( ZRHom `  K
)  =  ( ZRHom `  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   U.cuni 3839   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   .rcmulr 12756   RingHom crh 13706  ℤringczring 14146   ZRHomczrh 14167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-dec 9458  df-uz 9602  df-rp 9729  df-fz 10084  df-cj 11007  df-abs 11164  df-struct 12680  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-starv 12770  df-tset 12774  df-ple 12775  df-ds 12777  df-unif 12778  df-0g 12929  df-topgen 12931  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mhm 13091  df-grp 13135  df-minusg 13136  df-subg 13300  df-ghm 13371  df-cmn 13416  df-mgp 13477  df-ur 13516  df-ring 13554  df-cring 13555  df-rhm 13708  df-subrg 13775  df-bl 14102  df-mopn 14103  df-fg 14105  df-metu 14106  df-cnfld 14113  df-zring 14147  df-zrh 14170
This theorem is referenced by:  znzrh  14199
  Copyright terms: Public domain W3C validator