Step | Hyp | Ref
| Expression |
1 | | eqid 2193 |
. . . . . 6
⊢
(mulGrp‘𝐽) =
(mulGrp‘𝐽) |
2 | | eqid 2193 |
. . . . . 6
⊢
(mulGrp‘𝐾) =
(mulGrp‘𝐾) |
3 | 1, 2 | isrhm 13654 |
. . . . 5
⊢ (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾))))) |
4 | 3 | simplbi 274 |
. . . 4
⊢ (𝑓 ∈ (𝐽 RingHom 𝐾) → (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) |
5 | 4 | a1i 9 |
. . 3
⊢ (𝜑 → (𝑓 ∈ (𝐽 RingHom 𝐾) → (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring))) |
6 | | eqid 2193 |
. . . . . 6
⊢
(mulGrp‘𝐿) =
(mulGrp‘𝐿) |
7 | | eqid 2193 |
. . . . . 6
⊢
(mulGrp‘𝑀) =
(mulGrp‘𝑀) |
8 | 6, 7 | isrhm 13654 |
. . . . 5
⊢ (𝑓 ∈ (𝐿 RingHom 𝑀) ↔ ((𝐿 ∈ Ring ∧ 𝑀 ∈ Ring) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀))))) |
9 | 8 | simplbi 274 |
. . . 4
⊢ (𝑓 ∈ (𝐿 RingHom 𝑀) → (𝐿 ∈ Ring ∧ 𝑀 ∈ Ring)) |
10 | | rhmpropd.a |
. . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝐽)) |
11 | | rhmpropd.c |
. . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
12 | | rhmpropd.e |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
13 | | rhmpropd.g |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐽)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
14 | 10, 11, 12, 13 | ringpropd 13534 |
. . . . 5
⊢ (𝜑 → (𝐽 ∈ Ring ↔ 𝐿 ∈ Ring)) |
15 | | rhmpropd.b |
. . . . . 6
⊢ (𝜑 → 𝐶 = (Base‘𝐾)) |
16 | | rhmpropd.d |
. . . . . 6
⊢ (𝜑 → 𝐶 = (Base‘𝑀)) |
17 | | rhmpropd.f |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) |
18 | | rhmpropd.h |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝑀)𝑦)) |
19 | 15, 16, 17, 18 | ringpropd 13534 |
. . . . 5
⊢ (𝜑 → (𝐾 ∈ Ring ↔ 𝑀 ∈ Ring)) |
20 | 14, 19 | anbi12d 473 |
. . . 4
⊢ (𝜑 → ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ↔ (𝐿 ∈ Ring ∧ 𝑀 ∈ Ring))) |
21 | 9, 20 | imbitrrid 156 |
. . 3
⊢ (𝜑 → (𝑓 ∈ (𝐿 RingHom 𝑀) → (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring))) |
22 | 20 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ↔ (𝐿 ∈ Ring ∧ 𝑀 ∈ Ring))) |
23 | 10, 15, 11, 16, 12, 17 | ghmpropd 13353 |
. . . . . . . . 9
⊢ (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀)) |
24 | 23 | eleq2d 2263 |
. . . . . . . 8
⊢ (𝜑 → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀))) |
25 | 24 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀))) |
26 | 10 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐵 = (Base‘𝐽)) |
27 | | simprl 529 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐽 ∈ Ring) |
28 | | eqid 2193 |
. . . . . . . . . . . 12
⊢
(Base‘𝐽) =
(Base‘𝐽) |
29 | 1, 28 | mgpbasg 13422 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ Ring →
(Base‘𝐽) =
(Base‘(mulGrp‘𝐽))) |
30 | 27, 29 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (Base‘𝐽) =
(Base‘(mulGrp‘𝐽))) |
31 | 26, 30 | eqtrd 2226 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐵 = (Base‘(mulGrp‘𝐽))) |
32 | 15 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐶 = (Base‘𝐾)) |
33 | | simprr 531 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐾 ∈ Ring) |
34 | | eqid 2193 |
. . . . . . . . . . . 12
⊢
(Base‘𝐾) =
(Base‘𝐾) |
35 | 2, 34 | mgpbasg 13422 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ Ring →
(Base‘𝐾) =
(Base‘(mulGrp‘𝐾))) |
36 | 33, 35 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (Base‘𝐾) =
(Base‘(mulGrp‘𝐾))) |
37 | 32, 36 | eqtrd 2226 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐶 = (Base‘(mulGrp‘𝐾))) |
38 | 11 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐵 = (Base‘𝐿)) |
39 | 20 | simprbda 383 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐿 ∈ Ring) |
40 | | eqid 2193 |
. . . . . . . . . . . 12
⊢
(Base‘𝐿) =
(Base‘𝐿) |
41 | 6, 40 | mgpbasg 13422 |
. . . . . . . . . . 11
⊢ (𝐿 ∈ Ring →
(Base‘𝐿) =
(Base‘(mulGrp‘𝐿))) |
42 | 39, 41 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (Base‘𝐿) =
(Base‘(mulGrp‘𝐿))) |
43 | 38, 42 | eqtrd 2226 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐵 = (Base‘(mulGrp‘𝐿))) |
44 | 16 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐶 = (Base‘𝑀)) |
45 | 20 | simplbda 384 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝑀 ∈ Ring) |
46 | | eqid 2193 |
. . . . . . . . . . . 12
⊢
(Base‘𝑀) =
(Base‘𝑀) |
47 | 7, 46 | mgpbasg 13422 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ Ring →
(Base‘𝑀) =
(Base‘(mulGrp‘𝑀))) |
48 | 45, 47 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (Base‘𝑀) =
(Base‘(mulGrp‘𝑀))) |
49 | 44, 48 | eqtrd 2226 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐶 = (Base‘(mulGrp‘𝑀))) |
50 | 13 | adantlr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐽)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
51 | 27 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐽 ∈ Ring) |
52 | | eqid 2193 |
. . . . . . . . . . . . 13
⊢
(.r‘𝐽) = (.r‘𝐽) |
53 | 1, 52 | mgpplusgg 13420 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ Ring →
(.r‘𝐽) =
(+g‘(mulGrp‘𝐽))) |
54 | 53 | oveqd 5935 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ Ring → (𝑥(.r‘𝐽)𝑦) = (𝑥(+g‘(mulGrp‘𝐽))𝑦)) |
55 | 51, 54 | syl 14 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐽)𝑦) = (𝑥(+g‘(mulGrp‘𝐽))𝑦)) |
56 | 39 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐿 ∈ Ring) |
57 | | eqid 2193 |
. . . . . . . . . . . . 13
⊢
(.r‘𝐿) = (.r‘𝐿) |
58 | 6, 57 | mgpplusgg 13420 |
. . . . . . . . . . . 12
⊢ (𝐿 ∈ Ring →
(.r‘𝐿) =
(+g‘(mulGrp‘𝐿))) |
59 | 58 | oveqd 5935 |
. . . . . . . . . . 11
⊢ (𝐿 ∈ Ring → (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
60 | 56, 59 | syl 14 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
61 | 50, 55, 60 | 3eqtr3d 2234 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘(mulGrp‘𝐽))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
62 | 18 | adantlr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝑀)𝑦)) |
63 | 33 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝐾 ∈ Ring) |
64 | | eqid 2193 |
. . . . . . . . . . . . 13
⊢
(.r‘𝐾) = (.r‘𝐾) |
65 | 2, 64 | mgpplusgg 13420 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ Ring →
(.r‘𝐾) =
(+g‘(mulGrp‘𝐾))) |
66 | 65 | oveqd 5935 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ Ring → (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦)) |
67 | 63, 66 | syl 14 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦)) |
68 | 45 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝑀 ∈ Ring) |
69 | | eqid 2193 |
. . . . . . . . . . . . 13
⊢
(.r‘𝑀) = (.r‘𝑀) |
70 | 7, 69 | mgpplusgg 13420 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ Ring →
(.r‘𝑀) =
(+g‘(mulGrp‘𝑀))) |
71 | 70 | oveqd 5935 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ Ring → (𝑥(.r‘𝑀)𝑦) = (𝑥(+g‘(mulGrp‘𝑀))𝑦)) |
72 | 68, 71 | syl 14 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(.r‘𝑀)𝑦) = (𝑥(+g‘(mulGrp‘𝑀))𝑦)) |
73 | 62, 67, 72 | 3eqtr3d 2234 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝑀))𝑦)) |
74 | 31, 37, 43, 49, 61, 73 | mhmpropd 13038 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)) = ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀))) |
75 | 74 | eleq2d 2263 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)) ↔ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))) |
76 | 25, 75 | anbi12d 473 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾))) ↔ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀))))) |
77 | 22, 76 | anbi12d 473 |
. . . . 5
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)))) ↔ ((𝐿 ∈ Ring ∧ 𝑀 ∈ Ring) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))))) |
78 | 77, 3, 8 | 3bitr4g 223 |
. . . 4
⊢ ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ 𝑓 ∈ (𝐿 RingHom 𝑀))) |
79 | 78 | ex 115 |
. . 3
⊢ (𝜑 → ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) → (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ 𝑓 ∈ (𝐿 RingHom 𝑀)))) |
80 | 5, 21, 79 | pm5.21ndd 706 |
. 2
⊢ (𝜑 → (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ 𝑓 ∈ (𝐿 RingHom 𝑀))) |
81 | 80 | eqrdv 2191 |
1
⊢ (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀)) |