ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmpropd GIF version

Theorem rhmpropd 13810
Description: Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
rhmpropd.a (𝜑𝐵 = (Base‘𝐽))
rhmpropd.b (𝜑𝐶 = (Base‘𝐾))
rhmpropd.c (𝜑𝐵 = (Base‘𝐿))
rhmpropd.d (𝜑𝐶 = (Base‘𝑀))
rhmpropd.e ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
rhmpropd.f ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
rhmpropd.g ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐽)𝑦) = (𝑥(.r𝐿)𝑦))
rhmpropd.h ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝑀)𝑦))
Assertion
Ref Expression
rhmpropd (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem rhmpropd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . . . 6 (mulGrp‘𝐽) = (mulGrp‘𝐽)
2 eqid 2196 . . . . . 6 (mulGrp‘𝐾) = (mulGrp‘𝐾)
31, 2isrhm 13714 . . . . 5 (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)))))
43simplbi 274 . . . 4 (𝑓 ∈ (𝐽 RingHom 𝐾) → (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring))
54a1i 9 . . 3 (𝜑 → (𝑓 ∈ (𝐽 RingHom 𝐾) → (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)))
6 eqid 2196 . . . . . 6 (mulGrp‘𝐿) = (mulGrp‘𝐿)
7 eqid 2196 . . . . . 6 (mulGrp‘𝑀) = (mulGrp‘𝑀)
86, 7isrhm 13714 . . . . 5 (𝑓 ∈ (𝐿 RingHom 𝑀) ↔ ((𝐿 ∈ Ring ∧ 𝑀 ∈ Ring) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))))
98simplbi 274 . . . 4 (𝑓 ∈ (𝐿 RingHom 𝑀) → (𝐿 ∈ Ring ∧ 𝑀 ∈ Ring))
10 rhmpropd.a . . . . . 6 (𝜑𝐵 = (Base‘𝐽))
11 rhmpropd.c . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
12 rhmpropd.e . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
13 rhmpropd.g . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐽)𝑦) = (𝑥(.r𝐿)𝑦))
1410, 11, 12, 13ringpropd 13594 . . . . 5 (𝜑 → (𝐽 ∈ Ring ↔ 𝐿 ∈ Ring))
15 rhmpropd.b . . . . . 6 (𝜑𝐶 = (Base‘𝐾))
16 rhmpropd.d . . . . . 6 (𝜑𝐶 = (Base‘𝑀))
17 rhmpropd.f . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
18 rhmpropd.h . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝑀)𝑦))
1915, 16, 17, 18ringpropd 13594 . . . . 5 (𝜑 → (𝐾 ∈ Ring ↔ 𝑀 ∈ Ring))
2014, 19anbi12d 473 . . . 4 (𝜑 → ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ↔ (𝐿 ∈ Ring ∧ 𝑀 ∈ Ring)))
219, 20imbitrrid 156 . . 3 (𝜑 → (𝑓 ∈ (𝐿 RingHom 𝑀) → (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)))
2220adantr 276 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ↔ (𝐿 ∈ Ring ∧ 𝑀 ∈ Ring)))
2310, 15, 11, 16, 12, 17ghmpropd 13413 . . . . . . . . 9 (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀))
2423eleq2d 2266 . . . . . . . 8 (𝜑 → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀)))
2524adantr 276 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀)))
2610adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐵 = (Base‘𝐽))
27 simprl 529 . . . . . . . . . . 11 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐽 ∈ Ring)
28 eqid 2196 . . . . . . . . . . . 12 (Base‘𝐽) = (Base‘𝐽)
291, 28mgpbasg 13482 . . . . . . . . . . 11 (𝐽 ∈ Ring → (Base‘𝐽) = (Base‘(mulGrp‘𝐽)))
3027, 29syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (Base‘𝐽) = (Base‘(mulGrp‘𝐽)))
3126, 30eqtrd 2229 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐵 = (Base‘(mulGrp‘𝐽)))
3215adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐶 = (Base‘𝐾))
33 simprr 531 . . . . . . . . . . 11 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐾 ∈ Ring)
34 eqid 2196 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
352, 34mgpbasg 13482 . . . . . . . . . . 11 (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
3633, 35syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
3732, 36eqtrd 2229 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐶 = (Base‘(mulGrp‘𝐾)))
3811adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐵 = (Base‘𝐿))
3920simprbda 383 . . . . . . . . . . 11 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐿 ∈ Ring)
40 eqid 2196 . . . . . . . . . . . 12 (Base‘𝐿) = (Base‘𝐿)
416, 40mgpbasg 13482 . . . . . . . . . . 11 (𝐿 ∈ Ring → (Base‘𝐿) = (Base‘(mulGrp‘𝐿)))
4239, 41syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (Base‘𝐿) = (Base‘(mulGrp‘𝐿)))
4338, 42eqtrd 2229 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐵 = (Base‘(mulGrp‘𝐿)))
4416adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐶 = (Base‘𝑀))
4520simplbda 384 . . . . . . . . . . 11 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝑀 ∈ Ring)
46 eqid 2196 . . . . . . . . . . . 12 (Base‘𝑀) = (Base‘𝑀)
477, 46mgpbasg 13482 . . . . . . . . . . 11 (𝑀 ∈ Ring → (Base‘𝑀) = (Base‘(mulGrp‘𝑀)))
4845, 47syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (Base‘𝑀) = (Base‘(mulGrp‘𝑀)))
4944, 48eqtrd 2229 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐶 = (Base‘(mulGrp‘𝑀)))
5013adantlr 477 . . . . . . . . . 10 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐽)𝑦) = (𝑥(.r𝐿)𝑦))
5127adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐵𝑦𝐵)) → 𝐽 ∈ Ring)
52 eqid 2196 . . . . . . . . . . . . 13 (.r𝐽) = (.r𝐽)
531, 52mgpplusgg 13480 . . . . . . . . . . . 12 (𝐽 ∈ Ring → (.r𝐽) = (+g‘(mulGrp‘𝐽)))
5453oveqd 5939 . . . . . . . . . . 11 (𝐽 ∈ Ring → (𝑥(.r𝐽)𝑦) = (𝑥(+g‘(mulGrp‘𝐽))𝑦))
5551, 54syl 14 . . . . . . . . . 10 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐽)𝑦) = (𝑥(+g‘(mulGrp‘𝐽))𝑦))
5639adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐵𝑦𝐵)) → 𝐿 ∈ Ring)
57 eqid 2196 . . . . . . . . . . . . 13 (.r𝐿) = (.r𝐿)
586, 57mgpplusgg 13480 . . . . . . . . . . . 12 (𝐿 ∈ Ring → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
5958oveqd 5939 . . . . . . . . . . 11 (𝐿 ∈ Ring → (𝑥(.r𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
6056, 59syl 14 . . . . . . . . . 10 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
6150, 55, 603eqtr3d 2237 . . . . . . . . 9 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(mulGrp‘𝐽))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
6218adantlr 477 . . . . . . . . . 10 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝑀)𝑦))
6333adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐶𝑦𝐶)) → 𝐾 ∈ Ring)
64 eqid 2196 . . . . . . . . . . . . 13 (.r𝐾) = (.r𝐾)
652, 64mgpplusgg 13480 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
6665oveqd 5939 . . . . . . . . . . 11 (𝐾 ∈ Ring → (𝑥(.r𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦))
6763, 66syl 14 . . . . . . . . . 10 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦))
6845adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐶𝑦𝐶)) → 𝑀 ∈ Ring)
69 eqid 2196 . . . . . . . . . . . . 13 (.r𝑀) = (.r𝑀)
707, 69mgpplusgg 13480 . . . . . . . . . . . 12 (𝑀 ∈ Ring → (.r𝑀) = (+g‘(mulGrp‘𝑀)))
7170oveqd 5939 . . . . . . . . . . 11 (𝑀 ∈ Ring → (𝑥(.r𝑀)𝑦) = (𝑥(+g‘(mulGrp‘𝑀))𝑦))
7268, 71syl 14 . . . . . . . . . 10 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝑀)𝑦) = (𝑥(+g‘(mulGrp‘𝑀))𝑦))
7362, 67, 723eqtr3d 2237 . . . . . . . . 9 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝑀))𝑦))
7431, 37, 43, 49, 61, 73mhmpropd 13098 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)) = ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))
7574eleq2d 2266 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)) ↔ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀))))
7625, 75anbi12d 473 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾))) ↔ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))))
7722, 76anbi12d 473 . . . . 5 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)))) ↔ ((𝐿 ∈ Ring ∧ 𝑀 ∈ Ring) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀))))))
7877, 3, 83bitr4g 223 . . . 4 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ 𝑓 ∈ (𝐿 RingHom 𝑀)))
7978ex 115 . . 3 (𝜑 → ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) → (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ 𝑓 ∈ (𝐿 RingHom 𝑀))))
805, 21, 79pm5.21ndd 706 . 2 (𝜑 → (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ 𝑓 ∈ (𝐿 RingHom 𝑀)))
8180eqrdv 2194 1 (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  .rcmulr 12756   MndHom cmhm 13089   GrpHom cghm 13370  mulGrpcmgp 13476  Ringcrg 13552   RingHom crh 13706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mhm 13091  df-grp 13135  df-ghm 13371  df-mgp 13477  df-ur 13516  df-ring 13554  df-rhm 13708
This theorem is referenced by:  zrhpropd  14182
  Copyright terms: Public domain W3C validator