ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmpropd GIF version

Theorem rhmpropd 14183
Description: Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
rhmpropd.a (𝜑𝐵 = (Base‘𝐽))
rhmpropd.b (𝜑𝐶 = (Base‘𝐾))
rhmpropd.c (𝜑𝐵 = (Base‘𝐿))
rhmpropd.d (𝜑𝐶 = (Base‘𝑀))
rhmpropd.e ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
rhmpropd.f ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
rhmpropd.g ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐽)𝑦) = (𝑥(.r𝐿)𝑦))
rhmpropd.h ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝑀)𝑦))
Assertion
Ref Expression
rhmpropd (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem rhmpropd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2209 . . . . . 6 (mulGrp‘𝐽) = (mulGrp‘𝐽)
2 eqid 2209 . . . . . 6 (mulGrp‘𝐾) = (mulGrp‘𝐾)
31, 2isrhm 14087 . . . . 5 (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)))))
43simplbi 274 . . . 4 (𝑓 ∈ (𝐽 RingHom 𝐾) → (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring))
54a1i 9 . . 3 (𝜑 → (𝑓 ∈ (𝐽 RingHom 𝐾) → (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)))
6 eqid 2209 . . . . . 6 (mulGrp‘𝐿) = (mulGrp‘𝐿)
7 eqid 2209 . . . . . 6 (mulGrp‘𝑀) = (mulGrp‘𝑀)
86, 7isrhm 14087 . . . . 5 (𝑓 ∈ (𝐿 RingHom 𝑀) ↔ ((𝐿 ∈ Ring ∧ 𝑀 ∈ Ring) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))))
98simplbi 274 . . . 4 (𝑓 ∈ (𝐿 RingHom 𝑀) → (𝐿 ∈ Ring ∧ 𝑀 ∈ Ring))
10 rhmpropd.a . . . . . 6 (𝜑𝐵 = (Base‘𝐽))
11 rhmpropd.c . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
12 rhmpropd.e . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
13 rhmpropd.g . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐽)𝑦) = (𝑥(.r𝐿)𝑦))
1410, 11, 12, 13ringpropd 13967 . . . . 5 (𝜑 → (𝐽 ∈ Ring ↔ 𝐿 ∈ Ring))
15 rhmpropd.b . . . . . 6 (𝜑𝐶 = (Base‘𝐾))
16 rhmpropd.d . . . . . 6 (𝜑𝐶 = (Base‘𝑀))
17 rhmpropd.f . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
18 rhmpropd.h . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝑀)𝑦))
1915, 16, 17, 18ringpropd 13967 . . . . 5 (𝜑 → (𝐾 ∈ Ring ↔ 𝑀 ∈ Ring))
2014, 19anbi12d 473 . . . 4 (𝜑 → ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ↔ (𝐿 ∈ Ring ∧ 𝑀 ∈ Ring)))
219, 20imbitrrid 156 . . 3 (𝜑 → (𝑓 ∈ (𝐿 RingHom 𝑀) → (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)))
2220adantr 276 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ↔ (𝐿 ∈ Ring ∧ 𝑀 ∈ Ring)))
2310, 15, 11, 16, 12, 17ghmpropd 13786 . . . . . . . . 9 (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀))
2423eleq2d 2279 . . . . . . . 8 (𝜑 → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀)))
2524adantr 276 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀)))
2610adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐵 = (Base‘𝐽))
27 simprl 529 . . . . . . . . . . 11 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐽 ∈ Ring)
28 eqid 2209 . . . . . . . . . . . 12 (Base‘𝐽) = (Base‘𝐽)
291, 28mgpbasg 13855 . . . . . . . . . . 11 (𝐽 ∈ Ring → (Base‘𝐽) = (Base‘(mulGrp‘𝐽)))
3027, 29syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (Base‘𝐽) = (Base‘(mulGrp‘𝐽)))
3126, 30eqtrd 2242 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐵 = (Base‘(mulGrp‘𝐽)))
3215adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐶 = (Base‘𝐾))
33 simprr 531 . . . . . . . . . . 11 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐾 ∈ Ring)
34 eqid 2209 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
352, 34mgpbasg 13855 . . . . . . . . . . 11 (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
3633, 35syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
3732, 36eqtrd 2242 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐶 = (Base‘(mulGrp‘𝐾)))
3811adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐵 = (Base‘𝐿))
3920simprbda 383 . . . . . . . . . . 11 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐿 ∈ Ring)
40 eqid 2209 . . . . . . . . . . . 12 (Base‘𝐿) = (Base‘𝐿)
416, 40mgpbasg 13855 . . . . . . . . . . 11 (𝐿 ∈ Ring → (Base‘𝐿) = (Base‘(mulGrp‘𝐿)))
4239, 41syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (Base‘𝐿) = (Base‘(mulGrp‘𝐿)))
4338, 42eqtrd 2242 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐵 = (Base‘(mulGrp‘𝐿)))
4416adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐶 = (Base‘𝑀))
4520simplbda 384 . . . . . . . . . . 11 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝑀 ∈ Ring)
46 eqid 2209 . . . . . . . . . . . 12 (Base‘𝑀) = (Base‘𝑀)
477, 46mgpbasg 13855 . . . . . . . . . . 11 (𝑀 ∈ Ring → (Base‘𝑀) = (Base‘(mulGrp‘𝑀)))
4845, 47syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (Base‘𝑀) = (Base‘(mulGrp‘𝑀)))
4944, 48eqtrd 2242 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → 𝐶 = (Base‘(mulGrp‘𝑀)))
5013adantlr 477 . . . . . . . . . 10 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐽)𝑦) = (𝑥(.r𝐿)𝑦))
5127adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐵𝑦𝐵)) → 𝐽 ∈ Ring)
52 eqid 2209 . . . . . . . . . . . . 13 (.r𝐽) = (.r𝐽)
531, 52mgpplusgg 13853 . . . . . . . . . . . 12 (𝐽 ∈ Ring → (.r𝐽) = (+g‘(mulGrp‘𝐽)))
5453oveqd 5991 . . . . . . . . . . 11 (𝐽 ∈ Ring → (𝑥(.r𝐽)𝑦) = (𝑥(+g‘(mulGrp‘𝐽))𝑦))
5551, 54syl 14 . . . . . . . . . 10 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐽)𝑦) = (𝑥(+g‘(mulGrp‘𝐽))𝑦))
5639adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐵𝑦𝐵)) → 𝐿 ∈ Ring)
57 eqid 2209 . . . . . . . . . . . . 13 (.r𝐿) = (.r𝐿)
586, 57mgpplusgg 13853 . . . . . . . . . . . 12 (𝐿 ∈ Ring → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
5958oveqd 5991 . . . . . . . . . . 11 (𝐿 ∈ Ring → (𝑥(.r𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
6056, 59syl 14 . . . . . . . . . 10 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
6150, 55, 603eqtr3d 2250 . . . . . . . . 9 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(mulGrp‘𝐽))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
6218adantlr 477 . . . . . . . . . 10 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝑀)𝑦))
6333adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐶𝑦𝐶)) → 𝐾 ∈ Ring)
64 eqid 2209 . . . . . . . . . . . . 13 (.r𝐾) = (.r𝐾)
652, 64mgpplusgg 13853 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
6665oveqd 5991 . . . . . . . . . . 11 (𝐾 ∈ Ring → (𝑥(.r𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦))
6763, 66syl 14 . . . . . . . . . 10 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦))
6845adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐶𝑦𝐶)) → 𝑀 ∈ Ring)
69 eqid 2209 . . . . . . . . . . . . 13 (.r𝑀) = (.r𝑀)
707, 69mgpplusgg 13853 . . . . . . . . . . . 12 (𝑀 ∈ Ring → (.r𝑀) = (+g‘(mulGrp‘𝑀)))
7170oveqd 5991 . . . . . . . . . . 11 (𝑀 ∈ Ring → (𝑥(.r𝑀)𝑦) = (𝑥(+g‘(mulGrp‘𝑀))𝑦))
7268, 71syl 14 . . . . . . . . . 10 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝑀)𝑦) = (𝑥(+g‘(mulGrp‘𝑀))𝑦))
7362, 67, 723eqtr3d 2250 . . . . . . . . 9 (((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝑀))𝑦))
7431, 37, 43, 49, 61, 73mhmpropd 13465 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)) = ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))
7574eleq2d 2279 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)) ↔ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀))))
7625, 75anbi12d 473 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾))) ↔ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀)))))
7722, 76anbi12d 473 . . . . 5 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝑓 ∈ ((mulGrp‘𝐽) MndHom (mulGrp‘𝐾)))) ↔ ((𝐿 ∈ Ring ∧ 𝑀 ∈ Ring) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ 𝑓 ∈ ((mulGrp‘𝐿) MndHom (mulGrp‘𝑀))))))
7877, 3, 83bitr4g 223 . . . 4 ((𝜑 ∧ (𝐽 ∈ Ring ∧ 𝐾 ∈ Ring)) → (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ 𝑓 ∈ (𝐿 RingHom 𝑀)))
7978ex 115 . . 3 (𝜑 → ((𝐽 ∈ Ring ∧ 𝐾 ∈ Ring) → (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ 𝑓 ∈ (𝐿 RingHom 𝑀))))
805, 21, 79pm5.21ndd 709 . 2 (𝜑 → (𝑓 ∈ (𝐽 RingHom 𝐾) ↔ 𝑓 ∈ (𝐿 RingHom 𝑀)))
8180eqrdv 2207 1 (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  cfv 5294  (class class class)co 5974  Basecbs 12998  +gcplusg 13076  .rcmulr 13077   MndHom cmhm 13456   GrpHom cghm 13743  mulGrpcmgp 13849  Ringcrg 13925   RingHom crh 14079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-map 6767  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-plusg 13089  df-mulr 13090  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-mhm 13458  df-grp 13502  df-ghm 13744  df-mgp 13850  df-ur 13889  df-ring 13927  df-rhm 14081
This theorem is referenced by:  zrhpropd  14555
  Copyright terms: Public domain W3C validator